Squaring the Plane

Frederick V. Henle and James M. Henle

1. INTRODUCTION. This research was inspired by two lovely pieces of mathe-
matics. The first is the discovery by William T. Tutte, A. H. Stone, R. L. Brooks, and
C. A. B. Smith of squares with integral sides that can be tiled by smaller squares with
integral sides, no two alike. Tutte tells the story in “Squaring the Square,” a beautifully
written article that conveys vividly the excitement of mathematical research [9]. It be-
came widely-read in 1958 when it was reprinted in Martin Gardner’s “Mathematical
Games” column in Scientific American. It undoubtedly played a role in inspiring many
to become mathematicians.
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Figure 1. 175 x 175 perfect square.

The second piece is the well-known tiling of the plane by squares whose sides are
the Fibonacci numbers (Figure 2).! The tiling is elegant, but in light of Tutte’s work,
possesses a minor flaw—it contains two squares of the same side. The flaw is easily
remedied. We can use the squared square in Figure 1, together with a square of side
175 (Figure 3). This works, but some of the elegance is lost.
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Figure 2. Fibonacci tiling.

ICoincidentally, this tiling appears in the same volume of Gardner’s columns as “Squaring the Square” [1].
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Figure 3. Fibonacci rectangle seeded with Tutte’s perfect square.

In looking for a natural tiling that doesn’t repeat squares, one quickly discovers that
the first five squares fit together neatly (Figure 4) but it becomes progressively more
difficult to add consecutive squares without overlapping or leaving gaps. This suggests
the following question: Can the squares with whole-number sides, one of each size, be
fitted together to tile the plane? The answer is that they can. In succeeding sections we
will prove this, discuss the history of the problem, and pose a number of questions.

Figure 4. The first five squares.

2. SQUARING THE PLANE. We are going to show that the plane admits a tiling
that uses exactly one square of side-length n (n = 1, 2, ...). Our approach focuses on
rectangles and ells. By “ell,” we mean any six-sided figure whose sides are parallel to
the coordinate axes.

- L

Figure 5. Anell.

The following extends Tutte’s use of “perfect” for rectangles and squares.
Definition 1. A figure is perfect if it is composed entirely of squares of different sides.

All the remaining figures in this paper will be perfect. The key to our result is Lemma 5,
which states that given any perfect ell, it is possible to add squares to it to form a perfect
rectangle.

When we add squares to a perfect figure, keeping it perfect, we’ll say we are “puft-
ing it up.” When we puff an ell up to form a perfect rectangle, we’ll say we are “squar-
ing up the ell.” We can then “square the plane” as follows:

4 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 115



7]

Figure 6. A perfect ell.
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Figure 7. The ell of Figure 6 squared up.

1. Start with any perfect ell and square it up.
2. Create a new ell by attaching to the rectangle the smallest square not yet used.
3. Square this ell up, making sure that new squares are added in all four directions.

4. Repeat steps 2 and 3 ad infinitum.

Definition 2. An ell in standard position is an ell oriented so that the single reflex
angle is at the upper right. We refer to the sides by the uppercase letters in Figure 8
and their lengths by the corresponding lower case letters.
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Figure 8. An ell in standard position.

When we add squares to a figure, we always do so in such a way that an added
square’s side-length matches that of at least one side of the figure against which it
is placed. That means that the only squares we add to an ell in standard position are
squares adjacent to sides A, B, C, D, E, or F of the appropriate lengths. We call these
operations A, B, C, D, E, and F. So, for example, applying B then A to an ell produces
a larger ell (Figure 9). We denote sequences of operations by sequences of letters
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with the understanding that they are applied from left to right (so the combination of
operations in Figure 9 would be written BA).

-

Figure 9. An application of BA to the ell of Figure 8.

Note that in any ell in standard position, the length of side A is the sum of the
lengths of sides C and E,

a=c-+e,
and the length of side F is the sum of the lengths of sides B and D,
f=b+d.

Thus, to describe the dimensions of such an ell, we need describe only the lengths of
sides B, C, D, and E.

Definition 3. A 4-tuple (b, c, d, e) describes the dimensions of an ell if the sides B,
C, D, and E of the ell are b, ¢, d, and e, respectively.

Definition 4. A side of an ell is composite if it is not the side of a single square in the
ell.

In squaring up an ell, we make particular use of the operations B, F, and ED. For
that reason, the following definition is most useful:

Definition 5. A perfect ell is regular if each of the moves B, F, and ED either results
in a perfect ell in standard position or results in a perfect rectangle.

Figure 10 shows the smallest regular ell.

10

Figure 10. The smallest regular ell has dimensions (27, 12, 1, 5).

If an ell with dimensions (b, c, d, e) is regular, then there can be no squares with
sides b, f, e, or d + e in the ell. In particular, sides B, F, and E must be composite.
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In addition, it must be that ¢ > d + e (or else move ED would create an ell that is
not in standard position). These properties—no squares of sides b, f, e, or d + e, and
¢ > d + e—are both necessary and sufficient for regularity.

Lemma 1. Every perfect ell P in standard position can be puffed up to form a regular
ell without increasing the length of side D.

Proof. Let the dimensions of P be (b, ¢, d, e). In every perfect ell in standard posi-
tion, either A or F is the longest side, and whichever side is longest is necessarily
composite. We may assume that a < f, since if not, then side A is the longest side and
composite, so A can be performed, and in the new ell the length of side A is less than
the length of side F (Figure 11).

Figure 11. A makesa < f.

Since a < f, side F is the longest side and is composite, so F can be performed.
This allows us to assume further that ¢ > d. If not, we can perform FABA, and in the
new ell, the length of side C is greater than the length of side D (Figure 12). Note that
FABA does indeed puff up the ell—the first square, added by F, is larger than any in
the ell, and each new square is larger than the one before. Note also that the length of
side D is unaffected.

Figure 12. The operation FABA.

With our assumptions now (f > a, ¢ > d), we perform FABA (Figure 13). Let
(b', ', d, e') be the dimensions of the ell formed after FABA (d, since FABA doesn’t
affect side D). It should be clear that performing either F or B to this new ell would
result in a perfect ell in standard position.

To check move ED, note first that move E adds a square of side ¢’ = b + d + e.
This is larger than b + d but smaller than b 4 ¢ + d + e, hence a square not previously
used. Applying D after E adds a square of side d + ¢’ = b 4 2d + e. This is larger
than the square just added, but again less than b 4+ ¢ + d + e, since ¢ > d. The result
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Figure 13. New dimensions after FABA.

then, is a perfect ell. To show that the ell is either a rectangle or in standard position,
we need only the factthat ¢’ > d 4+ ¢ . Butc =2b+2c+d+eande =b+d +e,
and using ¢ > d, wehave ¢’ =b+2c+¢ >d+ €. [ |

Key to proving our main lemma (Lemma 5) is an analysis of ¢ — e modulo d. For a
regular ell ¢ > d + e. Consequently, we can express ¢ as kd + e + i where k > 1 and
0<i<d.

Lemma 2. If a regular ell has dimensions (b, ¢, d, e) such that ¢ = kd + e + i, with

k>2and 0 <i < d, then the sequence of moves BFA produces a regular ell with

dimensions (b', ¢, d, €'}, where ¢’ = (k — 1)d + ¢ +i.

Proof. Performing BFA (Figure 14) produces an ell with dimensions
b',c,d,ey=03b+c+d+e b+c,d,b+d-+e).

Computing, we obtain

d=b+c=b+tkd+e+i=(k—-1Dd+b+d+e+i=(k—-1)d+e +i.

To see that the new ell is regular, first note that a move of B or F would result in a
perfect ell in standard position.

c
2b+c+d+e A cte -}

b+d

Figure 14. The operation BFA.
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To see that ED would add only new squares, observe that BFA added squares of
sides f =b+d, b,and a’ = 2b + c + d + e. Move ED would add squares of sides
e =b+d+eandd + ¢ = b+ 2d + e. On the other hand, we have

2b+c+d+e>b+2d+e>b+d+e>b+d>b,

the first inequality following from the fact that ¢ > d.
All that remains to show that the ell is regular is that ¢’ > d + ¢’. This follows from
¢ =0k —1d+e +i,wherek > 2. [ |

Lemma 3. If a regular ell with dimensions (b, c,d, e) is such that ¢ = kd + e for
some positive integer k, then the ell can be squared up.

Proof. We can apply Lemma 2 until we have a regular ell whose dimensions
(b',c',d, ) satisty ¢ = d + ¢'. This ell can then be squared up with ED. [ |

Lemma 4. Every regular ell can be squared up.

Proof. Given a regular ell with dimensions (b, ¢, d, e), we have ¢ = kd + e + i with
k> 1and 0 <i < d. We do induction on d to show that the ell can be squared up.

If d =1, then i = 0 and we are done by Lemma 3. Now assume that the result
holds for any ell with dimensions (b*, ¢*, d*, ¢*) such that d* < d. We apply Lemma 2
iteratively until we have an ell with dimensions (', ¢, d, ¢’) with¢’ = d + ¢’ +i. Then
ED produces an ell with dimensions (', i,d + €', d + 2¢') (Figure 15). By flipping
this over we obtain in standard position an ell with dimensions (2¢’ + d, e + d, i, b’)
(Figure 16).

o~

“la
i
D
E
Figure 15. The operation ED. Figure 16. A flip after ED.

By Lemma 1 we can puff this up to a regular ell without increasing the length of
side D (which is 7). Since 0 < i < d, by the inductive hypothesis this flipped ell can
be squared up. Clearly, the unflipped ell can also be squared up, completing the proof
of the lemma. ]

Our main lemma follows immediately:

Lemma 5. Every perfect ell can be squared up.

Proof. Given an ell, we puff it up to a regular ell (Lemma 1), then square it up
(Lemma 4). |
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In other words, every perfect ell is a part of a perfect rectangle. We have now com-
pleted the spadework necessary to answer the tiling question raised in the introduction:

Theorem. It is possible to tile the plane with nonoverlapping squares using exactly
one square of each integral side.

Proof. 1t is easy to see how to carry out the plan described earlier. We start with any
perfect ell and grow it by adding squares as described in the algorithm whose steps we
presented in Section 2.

Note that we don’t move squares around; once added to the figure they are fixed. In
particular, we never actually flip the figure as in the proof of Lemma 5—the flipping
described there is simply to demonstrate that we can square up a particular ell. Note
also that we are guaranteed to fill the plane since we are careful to grow the figure in
all four directions in each cycle of the algorithm.

Finally, for any n the square of side n will be added to the figure by or before the
nth time we perform step 2 of the algorithm. Since we perform step 2 infinitely many
times, we are guaranteed to incorporate in the tiling a square of each integral side. B

3. REFLECTIONS. In preparing this paper, we learned some of the history of the
problem. The question was first posed by Solomon Golomb in a 1975 article in the
Journal of Recreational Mathematics. He called it the “heterogeneous tiling conjec-
ture” and challenged readers to prove or disprove it.

Martin Gardner wrote about the question four years later in his column in Scientific
American, later anthologized in [2]. He described one approach to a solution, a fairly
orderly tiling of roughly three-quarters of the plane with squares and reported that
Verner Hoggatt Jr., then editor of The Fibonacci Quarterly, had shown that no square
in the tiling appeared more than once.

Griinbaum and Shepard wrote about the problem in their 1987 book Tilings and
Patterns [4]. They described there a second way in which a squared square S can
generate a tiling of the plane (in addition to the method indicated in the present paper):
Take a second copy of S and expand it to a square S; such that the smallest square in
S is the size of the original square S and fit S into that square. Take another copy of
S and expand it to S, so that its smallest square is the size of Sy, and so on. Griinbaum
and Shepard record the observation of Carl Pomerance that in every tiling of the plane
by unique squares known at that time, the sides of the squares grow exponentially.

In 1997, Karl Scherer [6] succeeded in tiling the plane using multiple copies of
squares of all integral sides. The number ¢ (n) of squares of side » is finite but not
bounded. He describes his tiling as “size-alternating,” in that no two squares of the
same side share any portion of an edge (though they may share a corner).

4. QUESTIONS. Tiling is an enormous field. This theorem might be said to reside
in the subfield that concerns infinite tilings of the plane that use exactly one specimen
each of a well-defined collection of similar figures. Much work has been done here
and many questions remain:

Efficiency. The algorithm presented in this paper is extravagant in that the ratio of
the largest square used so far to the smallest square not yet used rapidly diverges.
The procedure for squaring up, for example, when applied to the smallest possible
ell, a 2 x 2 square next to a 1 x 1 square, ends in a rectangle with dimensions
1106481365205154721693 x 2659648557852203795117. The smallest square not
used at this point is 4 x 4.
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The squaring-up procedure can certainly be improved. By way of illustration, take
the ell in Figure 6. This can be squared up to a 69 x 61 rectangle with the sequence
of operations FEFEABC (Figure 7). Our procedure, however, doesn’t square the
ell up until a rectangle is reached with dimensions approximately (5.0 x 10'4?72) x
(5.8 x 10'4272),

Can our squaring-up procedure be improved in some well-defined way? Does an
algorithm exist for tiling the plane that methodically expands a connected island of
squares in such a way that the ratio of the largest square used to the smallest not yet
used is bounded by a polynomial?

Simple tilings. A perfect figure is simple if it contains no perfect subrectangle. Our
tiling is far from simple. Is there a simple tiling of the plane using one specimen of
each integral side?

The half-plane and quarter plane. Can the half-plane be squared? Can the quarter-
plane be squared? We are especially interested in this question because if it is possible
to tile a quarter plane four times using, altogether, every integral square just once, then
it’s possible to tile the plane using all the integral squares plus one square of any given
side (say 7).

Figure 17. = x 7.

Rational squares. The algorithm of our theorem can easily be used to tile the plane
using one square of every rational side. As with integral squares, we don’t know if a
similar procedure works for the half- or quarter-plane.

Positive and negative squares. We can tile the plane with squares whose sides are
natural numbers and with squares whose sides are rationals. What about squares whose
sides are (positive and negative) integers? We interpret the effect of placing a small
negative square on top of a large positive one as removing a part of the large square.
Once again, our algorithm works easily for this. Just as placing a positive square next to
a rectangle creates an ell, so does placing a negative square on a corner of a rectangle.
With care, no point of the plane will be touching more than three squares (one negative,
two positive).

0Odd squares. Can the plane be squared with all the odd squares? This seems unlikely
to us. Can the plane be squared with some of the odd squares? In general, what well-
defined subsets of the natural numbers can be used to tile the plane?

Coloring. Neither our tiling nor the Fibonacci tiling can be 3-colored. Is there a 3-

colorable tiling of the plane using exactly one square of each integral side? Is there a
simple algorithm for 4-coloring the tiling described in this paper?
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Space. Can space be cubed?

Triangles. Scherer proved that the plane cannot be tiled with equilateral triangles of
different sizes if one triangle is smallest [7]. He has found a way of tiling the plane,
however, with different sizes of iscoceles right triangles and with enlargements of cer-
tain other triangles [8]. Pomerance proved that it is possible to tile the plane with
one rational triangle of each congruence class such that any two neighboring triangles
share either an entire side or just a vertex [5]. Left open is the question: Can the plane
be tiled with all rational equilateral triangles so that no triangle has an infinite number
of neighbors?
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