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For our Mathematical Pleasure Jim Henle, Editor

Romantic
Mathematical Art:
Part I
JIM HENLE

This is a column about the mathematical structures that

give us pleasure. Usefulness is irrelevant. Significance,

depth, even truth are optional. If something appears in

this column, it’s because it’s intriguing, or lovely, or just

fun. Moreover, it is so intended.

� Jim Henle, Department of Mathematics and Statistics,

Burton Hall, Smith College, Northampton, MA 01063, USA.

e-mail: pleasingmath@gmail.com

To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour

—William Blake, Auguries of Innocence

TT
here is Romantic music. There is Romantic literature.
There is Romantic painting. The Romantic era in art
lasted a century or more. Is there such a thing as

Romantic mathematics?
Itwould seemunlikely. Consider thesephrases frequently

used to characterize Romanticism: ‘‘senses over intellect,’’
‘‘emotion over reason,’’ ‘‘freedom from rules.’’ But there are
words connected to Romanticism that have affinities to
mathematics: ‘‘mysterious,’’ ‘‘unbounded,’’ ‘‘imaginative,’’
‘‘remote,’’ ‘‘unattainable,’’ and ‘‘paradoxical.’’

I can think of two quite specific areas of mathematics
and mathematical art that are relevant here: infinity (‘‘un-
bounded,’’ ‘‘remote’’) and impossibility (‘‘unattainable,’’
‘‘paradoxical’’). The importance of these concepts in art is
witnessed by the fact that virtually no website on Roman-
ticism is complete without an image of Caspar David
Friedrich’s 1818 painting Wanderer Above the Sea of Fog,

a work that captures both impossibility and infinity as
intense feelings.

This Part I of ‘‘Romantic Mathematical Art’’ (Part II
will appear in a subsequent issue of this journal) is devoted
to the first of these notions, infinity, though as the Wan-
derer illustrates, infinity and impossibility are cousins. That
may be why for thousands of years, people have been both
attracted and frightened by infinity. In our own era, fear of
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infinity, apeirophobia, has become a recognized psycho-
logical condition.

Of course, this article can’t cover all the beautiful bits.
Infinity is, after all, big.

Infinite Geometric Art
When I was in college in the 1960s, the undergraduate math
majors were treated to a lecture from Emeritus Professor
BancroftBrown.Hewasageometer.He reminiscedabout the
old days. He led us to believe that geometry was a backwater,
a field that had simply played itself out. His message, in
essence, was that back in the old days, ‘‘we had fun.’’

What Brown didn’t know was that the revival of
geometry was already underway, led by Donald Coxeter,1

although it had not yet gathered strength. Most of what I
include here was discovered since Brown’s lecture. Fun is
now quite general.

The visual appeal of geometric mathematical structures
has made geometry a prime area for mathematical art. I
can’t do it justice here; I can only summarize and touch on
a few of the highlights, emphasizing the wide public
interest.

Tiling the Plane

Filling the plane with shapes is an ancient pastime prac-
ticed by almost every culture. The discovery of single
figures that tessellate the plane—that is, fill it entirely—is
also ancient.

Any three- or four-sided polygon can tile the plane. With
five sides, though, things get exceptionally tricky. Kepler
may have been the first to explore tiling with pentagons.2

The complete picture wasn’t filled in until Michaël Rao’s
2017 article ‘‘Exhaustive search of convex pentagons which
tile the plane.’’3 You have to look no further than last year’s
Intelligencer to see the attraction of pentagonal tiling in
both ancient and contemporary minds.4

The status of tiling is witnessed by the number of non-
mathematicians who have participated in it. A wonderful
example is Marjorie Rice. Excited by Martin Gardner’s col-
umn in Scientific American, she joined the search for
tessellating pentagons. I strongly recommend Doris
Schattschneider’s essay on this subject, ‘‘In praise of
amateurs.’’5

Rep-Tiles

A rep-tile is a figure that can be carved up into smaller
versions of itself.

Rep-tiles lead to interesting plane tilings because the
dissecting and composing can be replicated forever.

This is another area for amateurs. Lee Sallows,6 for
example, has pushed rep-tiles into self-tiling tile sets, which
he calls ‘‘setisets.’’7

Penrose Tiles

What makes for truly romantic art is a structure whose
unique characteristics are not apparent in any finite part.

1See Siobhan Roberts, The King of Infinite Space: Donald Coxeter, the Man Who Saved Geometry, Walker & Company, 2006.
2See Kepler’s 1619 book Harmonices Mundi.
3Available online at arXiv:1708.00274.
4See Frank Morgan, ‘‘My undercover mission to find Cairo tilings,’’ Mathematical Intelligencer 41:3 (2019), 19–27.
5In The Mathematical Gardner, edited by David A. Klarner, pp. 140–166, Prindle, Weber & Schmidt, 1981.
6An Intelligencer author (1990, 1992, 1995, 1997).
7See the Wikipedia article https://en.wikipedia.org/wiki/Self-tiling_tile_set.
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The tiles invented by Roger Penrose are certainly an
example of that. These two marvelous shapes

together can tile the plane.

And a few composition rules ensure that no matter how
they are combined, the tiling completely lacks global
symmetry.

As evidence of the attraction of these particular tiles as
mathematical art, I note that its features are so attractive that
Penrose thought it advisable to patent them.8 There is an
important amateur here too, Robert Ammann.9

Fractals

Fractals appeared before Bancroft Brown’s lecture, but they
took off as mathematical art only with the application of
computers and their exploration by Benoit Mandelbrot. In
Mandelbrot’s hands and the hands of others, fractals were
revealed as fantastic infinite toys.

If you pick one region of a fractal and magnify it,

you reveal new details, new structure, new mysteries. And
if you then select a detail of the magnified region, you
reveal another level of structure and mystery. And so on,
world without end. Every fractal opens a door to infinity.

The language of fractals and the pleasure that they give
have become part of the general culture. Googling ‘‘frac-
tals’’ gets me roughly the same number of hits as
‘‘Beethoven,’’ ‘‘quantum computing,’’ and ‘‘The New York
Yankees.’’ It gets many more hits than ‘‘Frank Sinatra,’’
‘‘Downton Abbey,’’ and ‘‘Fifty Shades of Grey.’’10

Dragons

Another infinite treasure is the dragon curve invented in
1966 by John Heighway.11

8And it was advisable. The patent was subsequently violated by the Kimberly-Clark company, and Roger Penrose sued.
9See Marjorie Senechal, ‘‘The mysterious Mr. Ammann,’’ Mathematical Intelligencer 26:4 (2004), 10–21.
10I checked out all 138,000,000 hits and decided that the Wikipedia page was the best for an overview and introduction. By the way, have you, dear reader, ever

donated to Wikipedia? They appreciate even the tiniest contributions.
11The first paper on the dragon curve was ‘‘Number representations and dragon curves,’’ by Chandler Davis (editor emeritus of the Intelligencer) and Donald Knuth, J.

Recreational Math. 3 (1970), 133–149. The dragon curve also appeared in a previous column of mine, ‘‘Numeralogy,’’ Mathematical Intelligencer 41:4 (2019), 22–27.
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The dragon has attributes of fractals and attributes of
rep-tiles. Is it art? I have to tell you that the dragon has its
origin in strips of folded paper.12 Anything that involves
folding paper is art.

Sandpiles

Like all of the above examples, sandpiles are based on a
specifically finite idea, yet they produce structures of infi-
nite detail and interest. Sandpiles are all about grains of
sand spilling, four grains at a time. Sandpiles sound like
kids’ stuff, so clearly, it’s art (and watch the ‘‘Rampage’’
episode of the TV series Numb3rs).

I recommend (and others do too) the paper ‘‘The
amazing, autotuning sandpile,’’ by Jordan Ellenberg.13

M. C. Escher

The most singular romantic mathematical artist must be
Maurits Cornelis Escher (1898–1972). His work openly
incorporates the infinite, the impossible,14 and often
both.15

For Escher’s place in the pantheon of mathematical
artists, you can read Martin Gardner or Doris
Schattschneider.16

Infinite Combinatorial Art
Combinatorial and numerical structures, missing the visual
impact of geometry, may be less immediately attractive. But
they can take you and they can hold you forever.

Hypergame

DEFINITION 1. A two-player game is finite if the game

always ends after a finite number of moves.

DEFINITION 2. Hypergame is a two-player game in which

the player going first chooses a finite game, then the sec-

ond player makes the first move of that game, and the

players continue to play the chosen game to its end (which

ends the play of hypergame).17

THEOREM 1. Hypergame is a finite game.

PROOF. The proof is simple. A finite game is chosen. The

chosen game, being finite, must end after a finite number of

moves, say n. So this instance of hypergame will have

ended after nþ 1 moves, a finite number. (

COROLLARY 1. Hypergame is not a finite game.

PROOF. The proof is simple. All we have to do is give an

example of an instance of hypergame that never ends. Here

it is: The first player chooses hypergame. That is permitted,

since by Theorem 1, hypergame is a finite game. Then the

second player makes the first move of hypergame (the

chosen game) and chooses hypergame. This can continue

forever. (

There’s a paradox here. How are we to extract our-
selves? The answer given by most mathematicians is that
hypergame doesn’t exist in any consistent mathematical
universe. The axiom system that underlies mathematics (for
most mathematicians), Zermelo–Fraenkel set theory, does
not allow sets to be too universal (such as, for example, the
set of all sets). Hypergame, if it existed, would arguably
contain everything, since every mathematical object could
be imagined as part of a finite game.

In this way, the hypergame paradox is very much like
Russell’s paradox, another wonderful creation of mathe-
matical art.18

There are other approaches to logical paradoxes like
these (coming up in Part II).

12Wikipedia is as good a place as any for an introduction and the story.
13It appeared in Nautilus, April 2, 2015. Available online at http://nautil.us/issue/23/dominoes/the-amazing-autotuning-sandpile.
14A quick cruise of www.mcescher.com/gallery/ should convince you of this.
15For ‘‘both’’ see the cover of the Mathematical Intelligencer 18:2 (1996), which featured H. M. S. Coxeter’s article ‘‘The trigonometry of Escher’s woodcut ‘Circle Limit

III,’’’ pp. 42–46.
16‘‘The eerie mathematical art of Maurits C. Escher,’’ in Mathematical Carnival, Martin Gardner, Mathematical Association of America, 1989, or ‘‘The mathematical side

of M. C. Escher,’’ Notices of the AMS 57:6 (2010), 706–718, and Visions of Symmetry, Abrams Books 2004, both by Doris Schattschneider.
17Hypergame was invented by Bill Zwicker. The theorems and proofs that follow are his as well.
18A straightforward account of this can be found at https://brilliant.org/wiki/russells-paradox/. Wikipedia and the Stanford Encyclopedia of Philosophy add many

nuances. I will also say more at the column website: www.math.smith.edu/*jhenle/pleasingmath/.
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The Hydra Game

In most works of infinite art, the infinity is hidden.
Hypergame is an example of this—infinity surfaces only in
the corollary. Another example is the two-envelope para-
dox, which will appear in Part II. Yet another example is
the hydra game.

Jeff Paris, Leo Harrington, and Lawrence Kirby, inspired
by a theorem of R. L. Goodstein, invented the hydra game.
It is all about cutting the heads off a finite dragon.

Imagine a dragon in the form of a mathematical tree
with multiple heads.

The challenge is to slay the dragon by cutting off its
heads, one by one. The problem is that the heads grow
back. When you cut off your first head,

you go back one segment of the branch from the cut,

and a new branch, identical to the branch above, grows
in.19

When you make your second cut,

the same thing happens except that now two copies of the
branch above grow back.

After the third cut, three branches grow back. After the
fourth cut, four branches. Looks like trouble!

Paris, Harrington, and Kirby prove that no matter how
you choose which head to cut next, eventually you will slay
the dragon. What is especially cool is that they show that
even though this is a theorem about finite objects, the

19If you cut off a head attached to the root of the tree, then there can be no moving downward, and so no new heads grow.
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existence of infinity is essential to the proof. In other
words, although this is a theorem about arithmetic (finite
numbers), the theorem is not provable using the axioms of
arithmetic. It is provable, though, in higher systems such as
analysis (infinite decimals) and set theory.

3nþ1

The hydra is not well known, but it’s good background for
the 3nþ 1 problem, which is well known indeed. The
problem originated with Lothar Collatz and is also known
as the Collatz problem, but it has many names attached to
it:20

Choose a positive integer n. Now repeatedly do:

• if n is even, replace n with n/2;
• if n is odd, replace n with 3nþ 1.

Collatz’s conjecture is that no matter what number you
start with, this process will eventually reach 1. Countless
programming students have written programs to test this. It
has been tested for all numbers below a fantabulously large
number. Is it true for all numbers?

Some n reach 1 pretty quickly. For example, n ¼ 26
takes 11 steps:

26; 13; 40; 20; 10; 5; 16; 8; 4; 2; 1:

But some numbers take absurdly many steps. My per-
sonal favorite is n ¼ 27, which takes 42 steps, climbing all
the way up to 9232 before finally collapsing to 1.

Mathematician (and outstanding mathematical artist)
J. H. Conway has speculated that the conjecture may be
true but not provable.21

But not provable in what system? The fact that every
hydra game will end is not provable in arithmetic. But it is
provable in analysis (which includes an axiom for infinity).
That might be possible here. Paul Erd}os’s conclusion was,
‘‘Mathematics is not ready for such problems.’’

The Collatz conjecture is high mathematical art. It can be
understood by any third-grader. Probably millions have
spent happy hours playing with it.

I’m an example. I have no special background in the
various fields that touch on the problem, but I can’t help
playing with it. As I write this, I’ve just thought of some-
thing that might ....

Really Big Numbers

At the end of the nineteenth century, Georg Cantor proved
that there are infinite sets of different sizes. It soon became

clear that there are infinitely many infinite sizes.22 In the
twentieth century, this area of mathematics became an art
that shares attributes of Star Wars films, Stephen King
novels, and extreme sports.

It started with mathematicians inventing axioms of
infinity, axioms stating that large cardinal numbers exist
with special properties. More often than not, the properties
are so special that it is impossible to prove that such car-
dinals exist. And usually, no one can prove that they don’t
exist.

The first such axiom was invented by Felix Hausdorff in
1908. Another was invented by Stanisław Ulam in 1930. In
the late twentieth century, a flood of new axioms came into
the world.23

I claim that these large cardinal axioms are art, although
they’re rather esoteric. I justify their status as art by the
following:

1. Axioms are worthless if they are inconsistent.
2. But each new cardinal axiom increases the danger of

inconsistency.
3. Despite the danger, researchers of almost every philo-

sophical persuasion are unwilling to give up large
cardinals.

The danger of inconsistency is that an inconsistent
axiom system is worthless. You can prove anything if your
system is inconsistent. Every statement is trivially both true
and false.

All this makes the lure of the infinite multifaceted. Large
cardinals are powerful, enabling one to prove fantastic
theorems (see the section on astrology below). Large car-
dinals open up galaxies of mathematical objects far, far
away. But there is danger.

Research in this area is like Olympic-level downhill
skiing. It’s thrilling. But you could wipe out. A skiing
accident can sideline you for a year, even end your career.
In the same way, the discovery of an inconsistency can
erase years or even a life of painstaking research.

For a personal story, see the column website.

Astrology

Astrologers make predictions about our lives on Earth
based on facts about the heavens—the positions of the stars
and planets. For many, this is fun but absurd. Now consider
the mathematical equivalent, that facts about finite natural
numbers might hinge on the existence of certain ridicu-
lously large cardinals. Absurd! But in fact, this can actually
happen. Ordinary astrology is complete nonsense. But
there are true examples of mathematical astrology. For
(some) details, see the column website.

20See Wikipedia, and see also The Ultimate Challenge: The 3x þ 1 Problem, edited by Jeffrey Lagarias, American Mathematical Society, 2010.
21J. H. Conway, On unsettleable arithmetical problems,’’ American Math. Monthly 120:3 (2013), 192–198.
22See the column website for a proof of this.
23I will give some examples at the column website.
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Magical Mathematical Art
Magic is a significant genre of mathematical art. It’s worth a
column by itself, except that two exceptional books of
mathematical magic have appeared in the last few years,
Magical Mathematics: The Mathematical Ideas That Ani-
mate Great Magic Tricks, by Persi Diaconis and Ron
Graham, and Mathematical Card Magic: Fifty-Two New
Effects, by Colm Mulcahy. These present the genre better
than I could possibly do.24

For some reason, neither book contains any tricks that
use an infinite deck of cards. That makes the idea of an
infinite card trick a challenge for some unprincipled
mathematical artist. I accepted the challenge. Here’s my
trick:

Standing before a large audience, possibly infinite, I pull
out an infinite deck of cards imprinted with the set of
integers.

0 1 2 3-1-2-3

I invite the audience to cut the deck wherever they like.
For example, they might choose to divide it between �37
and �36.

-36 -35 -34-37-38-39

That gives us two infinite decks, each one with a bottom
card but no top card.

-36
-35
-34
-33
-32
-31

-37
-38
-39
-40
-41
-42

(I colored the edges to help you tell them apart.)
Next, I let the audience riffle shuffle the two decks

together. That means they decide, for each card in the
shuffled deck, whether it comes from the left (blue) deck or
the right (red) deck. The process might look like this.

-37
-36
-35

-38
-34

-39
-40

-35
-34
-33

-41
-42

-43

I say to them, ‘‘I need volunteers for a game! The game
will have winners and losers. I’m going to give each winner
a $10 prize! There could be a lot of winners, so I’m asking
for a penny from each volunteer. With luck (or magic) the
pennies will pay for the prizes! For added protection,
though, my accountant has asked that I take only a finite
number of volunteers. So I’ll take any number of volun-
teers—a million, a billion, a trillion, whatever—so long as
it’s just a finite number.’’

Now I deal out cards to all the volunteers. How many
cards per volunteer? Once again, I leave that up to the
audience. (And here is the only time I do something
sneaky: if the number of volunteers is even and the number
of cards per volunteer is odd, I deal myself in, saying, ‘‘I’m
dealing myself in because I want to be a winner too!’’)

I add, ‘‘Pardon me for dealing from the bottom of the
deck! It’s a habit I picked up in grad school.’’

Now I tell everyone to add up the numbers on the cards
they hold. ‘‘That’s your score,’’ I say, ‘‘but it’s going to
change.’’ I tell them to even up their scores as much as
possible. If, for example, one person’s score is 134 and
another’s is 99, the 134 should be lowered by 17 to 117, and
the 99 raised by 17 to 116. The volunteers should keep
making exchanges until no pair of volunteer scores differ
by more than 1. The winners will be those with the higher
of the two scores.

‘‘Here’s an example,’’ I say. ‘‘Suppose there are three
people, A with score 2, B with score 5, and C with score 7.
If A evens up first with B and then with C, then A and C will
be winners (try it). But if instead C evens up with B, and
then C evens up with A, and then C evens up with B again,

24Magical Mathematics is published by Princeton University Press, 2012, and Mathematical Card Magic is published by CRC Press, 2013.

76 THE MATHEMATICAL INTELLIGENCER

Author's personal copy



then B and C will be winners. And if C evens up with B,
then with A, and then B evens up with A, then A and B will
be the winners—three completely different results!’’

‘‘Hey!’’ I say. ‘‘This doesn’t look good. In all these
cases—three people and two winners—I’m out $19.97.
Luckily, I’ve already bought my ticket out of town.’’

This evening-up process might take a long time
depending on the number of volunteers, but at this stage
everything is finite, so it won’t take infinitely long. When
the exchanges are over, we can expect there to be two
numbers, one apart, such that everybody’s score is one of
the two numbers.

Now I announce in a deep, impressive voice: ‘‘You’re a
winner if your score is higher than somebody else’s score.
As promised, I will now give $10 to every winner!’’

But amazingly, I pay nothing. There are no winners.
When all the exchanges have been made, everyone has the
exact same score.

Is this a good trick? I don’t know. I’ve never tried it. An
infinite deck on Ebay was cheaper than the ones on
Amazon, but the cost was still out of sight.

Why does the trick work? The key is the Gilbreath
principle, a lovely magical mathematical trick invented
some sixty years ago. I’ll explain how it works in the next
column and on the column website: www.math.smith.edu/
*jhenle/pleasingmath/.

And if you have any comments or questions, shoot me
an email at pleasingmath@gmail.com.
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