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For Our Mathematical Pleasure Jim Henle, Editor

Numeralogy
JIM HENLE

This is a column about the mathematical structures that

give us pleasure. Usefulness is irrelevant. Significance,

depth, even truth are optional. If something appears

in this column, it’s because it’s intriguing, or lovely,

or just fun. Moreover, it is so intended.

� Jim Henle, Department of Mathematics and Statistics,

Burton Hall, Smith College, Northampton,

MA 01063, USA.

e-mail: pleasingmath@gmail.com

I never could make out what those damned dots meant.

—Lord Randolph Churchill

TT
hat’s right, numeralogy (not numerology). In my last
column I described a mathematical art: the creation
of mathematical structures, structures that dazzle,

intrigue, excite, and/or amuse. There are many genres of
this art, including algebras, geometries, games, puzzles,
and tilings. This column is about one of the smaller genres:
numeration systems.

Ancient History
I still remember the surprise I felt when my seventh-grade
teacher (New Math, 1957) told us that a numeral was dif-
ferent from a number, that a numeral was a name for a
number. What’s in a name? How is that important? I knew
about Roman numerals, of course. They were just annoy-
ing. Surprise turned to delight as we explored base-6,
binary, and other numeration systems. It was, perhaps, my
first aesthetic mathematical experience.

Are numeration systems art?
Numeration systems indeed fit my definition of mathe-

matical structure—they can be described completely and
unambiguously. But the systems that cultures evolved over
millennia—Babylonian, Mayan, Hindu-Arabic ...—are no
more or less art than the other tools they produced. The
systems were intended to be useful but not, probably, to
entertain me.

Most developers of modern systems are dealing with
worldly problems—financial, mechanical, statistical.1 But
some were genuine artists. They created numerals that, as
noted above, delight. That makes them artists.

It’s difficult to know about the creators of systems cen-
turies old. Binary is a good example of the problem. Binary
was discovered independently by numerous thinkers
starting at least 400 years ago. Gottfried Leibniz was one of
those, not the first, and it thrilled him. The fact that all
quantities could be described using only two characters, 0
and 1, seemed to him beautiful and philosophically sig-
nificant. He wondered whether the power and symbolism
of binary could be useful in uniting the religions of man.2

Was he an artist?

1In the epigraph to this article, Lord Churchill was complaining about decimal points.
2The mathematician, philosopher, physicist Leibniz was, professionally, a lawyer and diplomat. One project he longed to see accomplished was to heal the schisms

among the Christian churches. See, for example, Frank J. Swetz, ‘‘Leibniz, the Yijing, and the Religious Conversion of the Chinese,’’ Mathematics Magazine 76:4

(2003), 276–291.
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The reader is surely acquainted with binary, but let me
describe it like this: the sequence of 0’s and 1’s (with a
subscript of 2) 1101012 names this sum:

1 = 1
2 · 0 = 0

2 · 2 · 1 = 4
2 · 2 · 2 · 0 = 0

2 · 2 · 2 · 2 · 1 = 16
+ 2 · 2 · 2 · 2 · 2 · 1 = 32

53

Every natural number can be expressed uniquely in this
way. Base 6 is the same, except the 2’s are replaced by 6’s
and the digits used are 0, 1, 2, 3, 4, and 5.

Fourteen years after seventh grade, I read in the second
volume of Donald Knuth’s The Art of Computer Program-
ming about a host of attractive variations.3 For me, the
loveliest of these were negabinary and balanced ternary.
Negabinary is base �2. The numeral

1 1 0 1 0 1�2

represents

1 = 1
−2 · 0 = 0

−2 · −2 · 1 = 4
−2 · −2 · −2 · 0 = 0

−2 · −2 · −2 · −2 · 1 = 16
+ −2 · −2 · −2 · −2 · −2 · 1 = −32

−11

Every integer has a unique numeral in negabinary.
There are at least two ways for you to be convinced of this.
One is to play with the system, to write and evaluate
negabinary numerals. The second is to read the proof I’ve
posted on the column website.4

As an interesting experiment, we can take the natural
numbers in binary,

02; 12; 102; 112; 1002; . . . ;

and use them to ‘‘count’’ the integers in negabinary:

0�2; 1�2; 10�2; 11�2; 100�2; . . . :

Graphically, we can watch as a point bounces along the
line of integers, in the order dictated by the natural num-
bers in binary.

0 1 2 3 4 5– 1– 2– 3– 4

How this would have delighted Leibniz—naming every
positive and negative whole number with just 0’s and 1’s!

Balanced ternary is like base 3 except that the digits are
þ, 0, and -, representing, respectively, 1, 0, and �1. The
numeral

þ� 0 � 0þ
BT

represents

1 = 1
3 · 0 = 0

3 · 3 · −1 = −9
3 · 3 · 3 · 0 = 0

3 · 3 · 3 · 3 · −1 = −81
+ 3 · 3 · 3 · 3 · 3 · 1 = 243

154

Balanced ternary also can represent all integers (proof
on the website).

Early Adventures
I found negabinary and balanced ternary so attractive that
in the next two years, while doing a stint of middle-school
teaching, I turned my hand to inventing numeration sys-
tems. I called my first system ‘‘pherocimals.’’5,6 A
pherocimal sequence

a b c d ef
Ph

represents the following sum:

f
e · f

d · e · f
c · d · e · f

b · c · d · e · f
+ a · b · c · d · e · f

Clearly, using 0’s and 1’s as digits doesn’t work, but I found
that using 1’s and 2’s works pretty well. 122121

Ph
, for

example, represents

3Addison-Wesley, 1969.
4www.math.smith.edu/*jhenle/pleasingmath.
5This was 40+ years ago. I imagined that my middle-school students would think ‘‘ferocious decimals’’ and get excited about them.
6If the reader is a middle-school student, I mean no disrespect.

� 2019 Springer Science+Business Media, LLC, part of Springer Nature, Volume 41, Number 4, 2019 23

Author's personal copy

http://www.math.smith.edu/%7ejhenle/pleasingmath


1 þ 2 þ 2 þ 4 þ 8 þ 8 ¼ 25:

Every number can be represented in this way, but not
uniquely. A simple example is

11Ph ¼ 2Ph:

But duplication can be eliminated by forbidding two 1’s in
a row. A proof of this is on the column website.

I can’t be sure of the motivations of Leibniz or other
thinkers, but I am reasonably sure of my own. When I am
constructing a numeration system, I’m out for a good time. I
definitely want to tickle and intrigue.

Another system I invented was fracimals. Fracimals were
inspired by the way the ancient Egyptians wrote fractions.

With the exception of 2
3, the Egyptians had symbols only for

‘‘unit’’ fractions: fractions with numerator 1. They had to

express a quantity such as 3
7 as a sum of distinct unit frac-

tions, for example,

1

3
þ 1

11
þ 1

231
¼ 3

7

� �
:

It’s not clear why they had this restriction.7

The fracimal replaces the multiplication of pherocimals
with division. For example, .a.b.c.d.e.f. represents the sum8

1÷ a
1÷ a÷ b

1÷ a÷ b÷ c
1÷ a÷ b÷ c÷ d

1÷ a÷ b÷ c÷ d÷ e
+ 1÷ a÷ b÷ c÷ d÷ e÷ f

That is,

1

a
þ 1

ab
þ 1

abc
þ 1

abcd
þ 1

abcde
þ 1

abcdef
:

Every rational greater than 0 can be written in this way. The

fraction 3
7, for example, equals .3.6.2.3.4.7., while 7

3 equals

.1.1.3.
Once again, we don’t have uniqueness; for example,

7

13
¼ :2:13: ¼ 3:2:5:7:13:

and

1

2
¼ :2: ¼ :3:2: ¼ :3:3:2: ¼ :3:3:3:2: ¼ � � � :

For fracimals of finite length, uniqueness can be enforced
by requiring that the ‘‘digits’’ not decrease. Every rational
number can still be expressed by such a fracimal. For

instance, 3
7 is .3.4.7.

Every real number in ð0;1� can be expressed by an
infinite fracimal. The infinite fracimal, :1:1:1:1:1. . . repre-
sents 1. Every other infinite fracimal converges to a
positive real number. Proofs of everything are on the
website.

And really, you have to like this fracimal:

:1:1:2:3:4:5. . . ¼ e:

Infinite fracimals avoid an annoying feature of decimal
fractions. Among infinite decimals there are duplications:

:375000. . . ¼ :374999. . . :

You must either live with the problem or else forbid either

9. . . or 0. . .. Fracimals don’t present this difficulty. You
keep all infinite fracimals and discard the finite ones. Every
finite fracimal can be reconfigured as an infinite one. For
example, .3.7.12 is the infinite fracimal

:3:7:13:. . . ¼ 1

3
þ 1

3 � 7 1 þ 1

13
þ 1

13

� �2

þ � � �
 !

¼ 1

3
þ 1

3 � 7 � 1

1 � 1
13

¼ 1

3
þ 1

3 � 7 1 þ 1

12

� �

¼ :3:7:12:

In those early years I designed many systems—frictions,
zerones, continued frictions, discontinued frictions ....9

Then I went back to serious stuff.

The State of the Art
I haven’t mentioned continued fractions. That’s a system of
numeration, too, and it’s a lot like the others. We can write
the continued fraction

aþ 1

bþ 1
cþ 1

dþ 1

eþ1
f

like this:10

aþ 1 � bþ 1 � cþ 1 � d þ 1 � e þ 1 � f :

I haven’t mentioned Zeckendorff’s Fibonacci numera-
tion, in which every natural number is uniquely named as a

7I’ve seen it suggested that the Egyptians thought that 1
7 was unique, that is, there’s really only one 1

7, so you can’t add up five of them—because there’s really only one

of them. This is a crazy explanation and I really like it.
8Important parentheses tastefully omitted.
9Numerous Numerals, The National Council of Teachers of Mathematics, 1975.
10Really important parentheses accidentally omitted.
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sum of nonconsecutive Fibonacci numbers.11 That’s simply
lovely.

And I haven’t mentioned the systems discovered by
Frank Gray: ‘‘Gray’’ codes.12 Those are lovely too.13

I assume there are many (mathematical) artists out there
sculpting numeration systems. I’d like to know about them.
I still fiddle with numeration on rainy days.14

Imaginary Names
In 1970, Chandler Davis (editor emeritus of the Intelli-
gencer) and Donald Knuth created a numeration system for
the Gaussian integers.15 This was tricky because the
Gaussian integers form a two-dimensional set. They’re
represented by all expressions of the form,

mþ ni;

where m and n are ordinary integers and i is an ‘‘imagi-
nary’’ square root of �1. They arrange nicely in a plane:

1 2 3 4

i

2i

3i

4i

3+2i

1+i

1–3i

–4+2i

–2–i

Knuth and Davis were investigating the dragon curve, itself
a marvelous work of mathematical art that had been dis-
covered only a few years earlier:16

(Just part of the dragon curve)

To name the Gaussian integers, Knuth and Davis
thought to use a base numeration system with a complex
number as the base. Their choice was 1 þ i. For digits,
Knuth and Davis used 0; 1; �1; i; and �i. For neatness

they wrote 1 for �1 and i for �i. The numeral

i i 1 1 0 i
1þi
;

for example, represents the sum

1 · i
1 + i · 0

1 + i · 1 + i · 1
1 + i · 1 + i · 1 + i · 1

1 + i · 1 + i · 1 + i · 1 + i · ı
+ 1 + i · 1 + i · 1 + i · 1 + i · 1 + i · i

which equals 2 þ i.
Without further refinement, there are infinitely many

duplications:

1 ¼ i i ¼ i 0 i i ¼ i 0 1 ¼ 1 i i ¼ � � � :

11A good source for the history of this is https://proofwiki.org/wiki/Zeckendorf’s_Theorem.
12See https://en.wikipedia.org/wiki/Gray_code.
13I also haven’t mentioned English and other natural languages. These have their fans. I have a small volume somewhere devoted to listing the first 1000 numbers

alphabetically in English and alphabetically as Roman numerals.
14See The Proof and the Pudding (Princeton University Press, 2015) for unbalanced ternary, and ‘‘The Same, Only Different,’’ Mathematical Intelligencer 39:2 (2017),

60–63 for the ring-a-ding system.
15‘‘Number Representations and Dragon Curves,’’ J. Recreational Mathematics 3 (1970), 66–81, 133–149. Reprinted in Selected Papers on Fun & Games, Donald

Knuth, CSLI Publications 2011.
16There are many references to the dragon on the website. Martin Gardner’s column on the subject is excellent: Martin Gardner. ‘‘Mathematical Games.’’ Scientific

American, March, April, July, 1967. Reprinted in his Mathematical Magic Show, pp. 207–209 and 215–220. Vintage, 1978.
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For uniqueness you have to make restrictions. Knuth and
Davis required that the nonzero ‘‘digits’’ appear in a par-
ticular order: in moving from right to left in the numeral,
the next nonzero digit to the left of a 1 had to be an i and

the next digit to the left of that had to be a 1, and to the left

of that, an i, and to the left of that, a 1, and so on:

1

1

ii

Knuth and Davis called their numerals ‘‘revolving repre-
sentations,’’ and the diagram above shows why.

The restrictions mean that the numeral we gave for

2 þ i, namely i i 1 1 0 i
1þi

, is unlawful. But there is a lawful

revolving representation for 2 þ i:

i 1 i 1rr :

With Knuth and Davis’s restriction there are still dupli-
cations, but they have a cute theorem: Every Gaussian
integer can be written in exactly four ways:

• with a rightmost nonzero digit of 1,
• with a rightmost nonzero digit of i,

• with a rightmost nonzero digit of 1,

• with a rightmost nonzero digit of i.

The other three ways of lawfully expressing 1 þ 2i are

i 1 0 irr; 1 i 1 0 i 1rr; 1 i 1 0 0 irr:

You may wonder why there are exactly four ways to
describe each number. You might guess that it has
something to do with the fact that exactly four copies of
the dragon curve fill the plane:

And indeed, the first known proof of this fact was Knuth
and Davis’s proof using revolving representations. All the
details are in their paper.

Binary Revolving Representations
The cute theorem of Knuth and Davis suggests something
nice: if we restrict ourselves to revolving representations
with a rightmost nonzero digit of 1, then we uniquely name
all the Gaussian integers.

That being so, we can simplify the numerals. We don’t
have to use all those digits; two are sufficient. We can take
any sequence of 0’s and 1’s (without a leading 0), then
moving from right to left, substitute for the 1’s the digits in
the circle starting with 1. The sequence

1 0 1 1 1 0 1 0 ;

for example, results in

1 0 i 1 i 0 1 0brr:

I call these binary revolving representations.
As with the integers, we can take the natural numbers in

binary,

02; 12; 102; 112; 1002; . . .

and use them to count the Gaussian integers,

0brr; 1brr; 10brr; 11brr; 100brr; . . .

bouncing in the complex plane:

This might not be the way you or I would go about
counting the points in the plane. But the madness fits with
the dragon in a nice way. The nth number in the bouncing
sequence is exactly the nth step of the dragon curve—for
all n’s that are a power of 2.

Here are the two together, the dragon curve in red and
the sequence of Gaussian integers in blue:

(Just part of four dragon curves)
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1

2

48

16

32

And here’s a table of values (powers of 2 in green):

n 1 2 3 4 5 6 7 8
brr 1 1 + i i 2i −1 −1 + i −i −2 + 2i

dragon 1 1 + i i 2i −1 + 2i −1 + i −2 + i −2 + 2i

n 9 10 11 12 13 14 15 16
brr −1− 2i −1− i 2− i −2 1− 2i 1− i 2 + i −4

dragon −3 + 2i −3 + i −2 + i −2 −3 −3− i −4− i −4

You can see that the numbers also match for 3, 6, 12, ...,
each a sum of two consecutive powers of 2. This is an easy
consequence of Knuth and Davis’s work.

Complex numbers were unknown four hundred years
ago. But pairs of integers were understood. Binary
revolving representations effectively name all pairs, and
they do it with only two symbols: 0 and 1.

That would have thrilled Gottfried Wilhelm Leibniz.

Looking Back
In my last column I left you with two structures invented by
students of mine. One had been discovered much earlier
and is the subject of many papers. The other is new. I didn’t
say which was which, but I’ll tell you now. Halley Haruta’s
circles of numbers was noticed by Enrico Ducci in the
1930s. I learned about this when I read the paper by Achim
Clausing in the (then latest) issue of the Monthly.17 In the
case in which there are four numbers in the circle, Clausing
describes the action as the ‘‘well-known Four Number

Game of E. Ducci.’’ Clausing’s paper has an extensive
bibliography.

The other structure, by Amelia Austin, is, as far as I
know, new and a source of interesting questions. Given a
rectangle and a dot, where can you put an to get a puzzle
with a unique solution? Where can you put two ’s?

A Retrograde Problem
A reader pointed out to me that the first retrograde analysis
problem in the column on Raymond Smullyan18

has a second solution. One quickly sees that the previous
move (we are told it was Black’s) must have been the Black
king moving up one square (from a7), and the puzzle then
becomes figuring out how White had put him in check.
Smullyan’s solution is that the check was revealed by a
white knight that moved to the upper left corner and was
taken by the king. But my reader noticed that if you don’t
assume that White’s side of the board is at the bottom, then
another solution is that a White pawn moved to the bottom
row and was promoted to a bishop.

The puzzle appears twice in The Chess Mysteries of
Sherlock Holmes,19 on the cover (as above and as it
appeared in the column) and inside the book on page 34,
where the bottom is labeled ‘‘White.’’ Thus there are two
solutions to the cover puzzle and one solution to the puzzle
on page 34.

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

17Achim Clausing, ‘‘Ducci Matrices,’’ American Mathematical Monthly 125:10 (2018), 901–921.
18‘‘The Entertainer,’’ Mathematical Intelligencer 40:2 (2018), 76–80.
19Alfred A. Knopf, 1979.
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