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Abstract

We present a new Nim-type game. The description is simple but the strategy is
complex. There is a well-defined core outside of which the game is neatly structured.
Inside the core the game appears chaotic. We have partial results for the core, a strategy
outside the core, and an overall strategy that might be described as “promising.”

Nimrod1 is inspired by the partly mythic teenage duel in which participants race at each
other in cars (hotrods). The loser is the first to swerve away (both lose if neither swerves).
Imagine two players facing each other in cars with velocities in the set of natural numbers.
By turns, each player elects either to maintain speed, to accelerate 1 or to decelerate 1.
After the choice is made, one unit of time passes and the cars move toward each other
according to their velocities. It then becomes the other player’s turn. The player during
whose move the cars crash is the loser.

In this paper, we recast Nimrod in the equivalent but less confrontational context of a
pile of sticks. A game position is an ordered pair, (p, r), where p is the size of the pile and
r is the rate at which sticks are being removed. Players may increase r by 1, decrease r by
1 or leave it alone, then they must remove r sticks from the pile. If this is not possible the
player loses.

Nimrod is complex

For each (p, r) either the player to move next has a winning strategy or else the other
player does. In the chart below the square at (p, r) is shaded gray if the player to move
has the winning strategy.

p

1
2
3
4
5
6
7

r

1 2 3 4 5 6 7 . . .

1The authors thank Fred Henle for suggesting this name.
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The white triangle at the left consists of the pairs (p, r) where p < r− 1 and the player
to move next has no legal move. That triangular sector gives rise to the alternating gray
and white sectors to the right.

p

r

The region of the sectors can be analyzed and we will do this shortly, but more in-
teresting is the part below the sectors which seems frankly chaotic. The pattern of white
squares on the row r = 1,

translated into natural numbers,

3, 5, 8, 11, 13, 17, 20, 22, 25, 27, 30, 32, 35, 38, 40, 43, . . .

is a sequence previously unknown to the On-line Encyclopedia of Integer Sequences [1].

Very partial results

We have a host of partial results. We include a sample in this section.

Definition 1 For p, r > 0, let w(p, r) = 1 if the next player to move at game position

(p, r) has a winning strategy. Let w(p, r) = 0 if the second player to move has a winning

strategy.

Proposition 1 For p > 0,

1. If w(a, 1) = 0 then w(a + 1, 1) = 1.

2. If w(a, 1) = 1 and w(a + 1, 1) = 1 then w(a + 2, 1) = 0.

Proof:

1. If w(a, 1) = 0 then the player to move at (a + 1, 1) can take 1 stick, leaving the
opposing player with (a, 1), a losing position.

a
0 1
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2. If w(a, 1) = 1 and w(a+1, 1) = 1 then a winning move for a player at (a+1, 1) can’t
be to take a single stick, since (a, 1) is a winning position. The only other move is to
take two sticks, hence it must be that w(a − 1, 2) = 0.

a
1 1

0

This in turn tells us that all positions a player can move to from (a−1, 2) are winning
positions, that is, w(a − 2, 1) = w(a − 3, 2) = w(a − 4, 3) = 1.

a
1 1

0
1

1
1

From this we learn that w(a − 1, 1) = 0 since only winning positions are accessible.
That gives us that w(a, 2) = 1, since a player at (a, 2) can move to (a−1, 1), a losing
position.

a
1 1

0
1

1
1

0
1

Finally we see that (a + 2, 1) is a losing position since a player there can only move
to (a + 1, 1) and (a, 2), winning positions.

a
1 1

0
1

1
1

0
1

0

�

This is just a sample. From hypothesis 2 we can further deduce:

p
1 1

0
1

1
1

0
1

0
1
1

1
11

1
1

1
1

Something as simple as this configuration,

p
0
0
1

determines the value of w at at least 30 positions:
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p
1 1

0
1

1
1

0
1

0
1
1

1
11

1
1

1
1

1
1
1

0
1
1
1

0 1
1

0

1
1

1
1

Definition 2 Let {nk} enumerate those numbers i such that w(i, 1) = 0. Let f(k) the

number of 0’s at the bottom of the nkth column, that is, w(nk, j) = 0 for all j ≤ f(k) and

w(nk, f(k) + 1) = 1.

We state the following without proof.

Proposition 2 For all k > 0,

1. If f(k) = 1 or 2 then f(k + 1) ≥ 2.

2. If f(k) = 3 then f(k + 1) = 1.

3. If f(k) = 4 then f(k + 2) 6= 1 or 3.

4. If f(k) ≥ 5 then f(k + 2) = 2 or 3.

Nimrod can be (partly) explained

Outside of the region at the bottom, Nimrod is reasonably well-behaved.

Proposition 3 For all k ≥ 0, p, r > 0,

• Ak: If (2k − 1)r − k − 1 < p < 2kr − 3k then (p, r) is a winning position and taking

r − 1 sticks from the pile is a winning move.

• Bk: If (2k − 1)r + k − 2 < p < 2kr − k then (p, r) is a winning position and taking

r sticks from the pile is a winning move.

• Ck: If (2k − 1)r + 3k − 3 < p < 2kr + k then (p, r) is a winning position and taking

r + 1 sticks from the pile is a winning move.

• Dk: If 2kr + k − 1 < p < (2k + 1)r − k − 1 then (p, r) is a losing position.

Proof: We prove these simultaneously by induction on k. Note first that A0, B0, and C0

are vacuously true and that D0 states what we observed earlier, that if p < r − 1, there is
no legal move.

Now suppose that proposition holds for a given k − 1.
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• Ak: Suppose that
(2k − 1)r − k − 1 < p < 2kr − 3k. (1)

Since k ≥ 1, p > r − 2, taking r′ = r − 1 sticks from the pile is a legal move leaving
p′ = p − r′ sticks in the pile. If we substitute r = r′ + 1, p = p′ + r′, and k = k′ + 1
in (1), we have

(2(k′ + 1) − 1)(r′ + 1) − (k′ + 1) − 1 < p′ + r′ < 2(k′ + 1)(r′ + 1) − 3(k′ + 1)

which yields
2k′r′ + k′ − 1 < p′ < (2k′ + 1)r′ − k′ − 1.

Then by Dk−1, (p′, r′) is a losing position.

• Bk: If
(2k − 1)r + k − 2 < p < 2kr − k, (2)

k ≥ 1, then p > r − 1 so taking r′ = r sticks from the pile is a legal move. If we
substitute r = r′, p = p′ + r′, and k = k′ + 1 in (2), we have

(2(k′ + 1) − 1)r′ + (k′ + 1) − 2 < p′ + r′ < 2(k′ + 1)r′ − (k′ + 1)

which again yields

2k′r′ + k′ − 1 < p′ < (2k′ + 1)r′ − k′ − 1,

so (p′, r′) is a losing position by Dk−1.

• Ck: If
(2k − 1)r + 3k − 3 < p < 2kr + k, (3)

k ≥ 1, p > r so taking r′ = r + 1 sticks from the pile is a legal move. Substituting
r = r′ − 1, p = p′ + r′, and k = k′ + 1 in (3), we have

(2(k′ + 1) − 1)(r′ − 1) + 3(k′ + 1) − 3 < p′ + r′ < 2(k′ + 1)(r′ − 1) + (k′ + 1)

again yielding
2k′r′ + k′ − 1 < p′ < (2k′ + 1)r′ − k′ − 1.

As before, (p′, r′) is a losing position by Dk−1.

• Dk: Suppose that
2kr + k − 1 < p < (2k + 1)r − k − 1 (4)

and consider the possible moves of a player in position (p, r). Taking r−1 sticks from
the pile gives us r = r′ + 1 and p = p′ + r′. Substituting these values in (4), we have

2k(r′ + 1) + k − 1 < p′ + r′ < (2k + 1)(r′ + 1) − k − 1
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which yields
(2k − 1)r′ + 3k − 1 < p′ < 2kr′ + k.

This implies (2k − 1)r′ + 3k − 3 < p′ < 2kr′ + k so by Ck (established above), (p′, r′)
is a winning position.

Suppose instead that r sticks are taken from the pile. Substituting r = r′ and
p = p′ + r′ into (4), we have

2kr′ + k − 1 < p′ + r′ < (2k + 1)r′ + 1 − k − 1

giving us
(2k − 1)r′ + k − 1 < p′ < 2kr′ − k.

This in turn gives us (2k − 1)r′ + k − 2 < p′ < 2kr′ − k so by Bk, (p′, r′) is a winning
position.

Finally, if r +1 sticks are taken from the pile, we substitute r = r′−1 and p = p′ + r′

into (4) to get

2k(r′ − 1) + k − 1 < p′ + r′ < (2k + 1)(r′ − 1) − k − 1

giving us
(2k − 1)r′ − k − 1 < p′ < 2kr′ − 3k − 2.

This implies that (2k − 1)r − k − 1 < p < 2kr − 3k so by Ak, (p′, r′) is a winning
position.

�

Coverage by the conditions Ak, Bk, Ck, Dk breaks down when the intervals drift apart.
This can occur, for example, when the right endpoint for Ak matches the left endpoint for
Bk. If

p = 2kr − 3k = (2k − 1)r + k − 2 (5)

then p is not in any of the intervals. Solving (5) for p and r gives us p = 1

2
r2 + 1

4
r − 3

2
.

p

r
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A faulty but promising strategy

Above the chaotic region of the game plot, for a fixed p, the
picture looks a bit like a periodic function of r with a period
that diminishes as r gets smaller. This suggests that we
might mimic the plot using a trigonometric function. We
tried various forms, eventually settling on

G(r, p) = cos

(

ar + bp

cr + d

)

.

Using this function to assign shades to squares on the
quarter plane gives us a plot resembling the game plot.

p

r

p

r

p

r

Let “Model” stand for the strategy of taking r − 1, r, or r + 1 sticks from the pile
depending on which of G(r − 1, p − (r − 1)), G(r, p − r), G(r + 1, p − (r + 1)) is largest, if
r > 1, and similarly, r, or r + 1 depending on which of G(r, p− r) and G(r + 1, p− (r + 1))
is largest. Model is smart enough to know and use Proposition 3. Let “Random” be the
strategy that moves at random. Starting inside the chaotic region, with r = 1, Model
defeats Random rather decisively, over 80% of the time. This is true for p as high as a
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million sticks.
For better competition, we define “Proposition” to be the strategy that plays Random

unless p > 1

2
r2 in which case it plays Model. A game between Model and Proposition tests

how well Model deals with the chaotic region. These games are more evenly matched but
Model still dominates. We ran 2000 games each of pile sizes 1000, 10000, 100000, and a
million sticks. Model beat Proposition over 60% of the time at each level.
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