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For our Mathematical Pleasure Jim Henle, Editor

Romantic
Mathematical Art:
Part II
JIM HENLE

This is a column about the mathematical structures that

give us pleasure. Usefulness is irrelevant. Significance,

depth, even truth are optional. If something appears in

this column, it’s because it’s intriguing, or lovely, or just

fun. Moreover, it is so intended.

� Jim Henle, Department of Mathematics and Statistics, Burton

Hall, Smith College, Northampton, MA 01063, USA. e-mail:

pleasingmath@gmail.com

The most beautiful thing we can experience is the
mysterious. It is the source of all true art and science.

—Albert Einstein.

TT
he mysterious is indeed beautiful. And the most
beautiful mysteries are those surrounding

The Impossible.

Part I of ‘‘Romantic Mathematical Art,’’ which appeared
in the previous issue of this journal, focused on the infinite.
Part II focuses on impossibility, though as noted in Part I,
the two are closely related. Some of the topics covered in
Part I (Penrose tiling, the hydra, hypergame, astrology, and
M. C. Escher) dipped noticeably into impossibility.

The art of impossibility is singular for its history, for its
philosophical interest, and for its political connections. It’s
all here. Well, some of it is here.

Truth
It all began, probably, with the liar paradox.

The Liar

This sentence is false.

If the sentence is true, then it’s false. And if it’s false, then
it’s true. Impossible! But it could be art.

Versions of the paradox date to the ancient Greek
philosopher–poet Epimenides. Was the paradox intended
to please (hence, by our criteria, art)? That’s a question that
can’t be answered. Instead, consider the paradox of
Euathlus, which came along about a century later. It seems
like a lot of fun. It could be art.

The story is that Euathlus studied law under Protagoras
with the understanding that payment for his education
would be made as soon as he won his first case. But after
his studies were completed, Euathlus didn’t practice law.
Protagoras grew impatient and sued his student for pay-
ment. Euathlus undertook his own defense.

You see the difficulty. If the judgment is that Euathlus
must pay, it would violate the agreement, since he would
have lost the case. On the other hand, if the judgment is
that he doesn’t have to pay, then surely he does have to
pay, having won the case!1

Let me say now that by ‘‘paradox’’ I mean a self-con-
tradictory situation in which there appear to be good
arguments on both sides. A paradox can be considered

1The pleasure of this paradox continues today. A look on the web yields a variety of modern perspectives.
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resolved only if a flaw is found in one of the arguments or if
the situation can be shown not to arise.

One answer to the liar is to argue that not every sentence
has a truth value. Self-referential statements are especially
prone to paradox. We could resolve these paradoxes simply
by denying truth values to such statements.

Miniac

My favorite self-referential paradox is the computer Miniac,
devised by the Native American mathematician Thomas
Storer. It is a single coin:

Any coin will do. Miniac answers every yes-or-no
question correctly, but its use needs a little explanation.

Suppose you wanted to know whether the stock market
will go up tomorrow. You simply ask,

O Miniac, will the stock market go up tomorrow?

and flip the coin. Heads means yes, tails means no. Let’s say
you flip it and it comes up heads. Does that mean the stock
market will go up?
Not necessarily. That question was preliminary. You must
ask a second question:

O Miniac, is the truth value of your answer to this
question the same as the truth value of your answer
to the previous question?

and flip the coin again. Suppose now it comes up tails,
meaning no. At this point, you do some logical reasoning.
There are two possibilities:
Case 1: the second answer is correct, and Case 2: the sec-
ond answer is incorrect.

Case 1: Since the answer (no) is correct, the truth values
of the answers are not the same. And since the second
answer is correct, the first answer is incorrect.

Okay, that’s one case. What about the other?
Case 2: Since the answer (no) is incorrect, the truth

values of the answers are the same. And since the second
answer is incorrect, the first answer is also incorrect.

In both cases we find that the answer to the first ques-
tion is incorrect! Thus we can say with complete confidence
that the stock market will not go up tomorrow!

As we just saw, a tails for the second question nullifies
the first answer. In a similar way, a heads for the second

question verifies the first answer. Miniac, in two flips, gives
you an answer that we can prove logically is correct!

Paraconsistency

There have been many philosophical attempts to deal with
self-referential paradoxes. The response of mathematical
logicians has been to craft axioms that don’t permit self-
reference. That works. I’m good with that.2 But a group of
philosophers led by Graham Priest have a different solu-
tion. They permit statements to be both true and false, that
is, ‘‘paradoxical’’—like the liar sentence. Logic systems
permitting paradoxical statements are called ‘‘paraconsis-
tent’’ logics. There are different versions, each with
interesting structures and consequences. A good introduc-
tion is Priest’s book In Contradiction: A Study of the
Transconsistent.3

Truth in political discourse has become flexible, but it’s
not yet actually paradoxical.4 If Raymond Smullyan were
still with us, he might construct puzzles with knights who
always tell the truth, knaves who always lie, and knerds
who always speak paradoxically.5

Knowledge
The incompleteness theorems of Kurt Gödel show that in
most mathematical systems there are statements that cannot
be proved true and cannot be proved false. In other words,
there are questions for which it is impossible (mathemati-
cally) to know the answer.

The Axiom of Choice

A singular question awaiting an answer is whether the
axiom of choice is true. The axiom of choice was first used
unconsciously in proofs about infinite sets. When it was
identified, it was both shunned and celebrated. In time it
produced paradoxes. The most notorious was its use by
Stefan Banach and Alfred Tarski to separate a solid ball into
parts that could be reassembled to form two solid balls the
size of the original ball. Not long after the appearance of
this paradox, Kurt Gödel showed that the axiom of choice
could not be disproved. Thirty years later, Paul Cohen
showed that it couldn’t be proved.

Philosophers have written extensively about the prob-
lem. Is there such a thing as truth? If there is, are there ways
to find it? How do we know the truth of any axiom?

The axiom of choice is grudgingly accepted today by
most mathematicians, despite the appearance every few
years of new and lovely paradoxes. An especially artful one
is the procedure devised by Chris Hardin and Alan Taylor.
They show that with the axiom of choice, it’s possible to

2Wait! Every use of the pronoun ‘‘I’’ is self-referential, isn’t it? Should I stop using ‘‘I’’? We will think about this.
3Oxford University Press, 2nd edition, 2006.
4This is being written in early 2020. By the time you read this, political rhetoric may have crossed that line. Consult your local logicians.
5After a few weeks thinking about this, I have devised some puzzles. I’ll post them on the column website, www.math.smith.edu/*jhenle/pleasingmath/.
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construct a function that predicts the state of the universe
given all previous states. The function is not always correct,
but it is ‘‘almost always’’ correct (in the measure-theoretic
sense).6

The axiom of choice also makes possible a wonderful
class of puzzles, one of which appeared in an earlier col-
umn.7 The puzzles are known as hat puzzles, because
many of them can be posed as problems involving some-
one trying to guess the color of the hat that has been placed
on their head.8

Here is a sample: Imagine a room with infinitely many
boxes, all of them closed, one for each natural number. In
each box, there is a decimal number. One by one, a hun-
dred mathematicians enter the room. Each mathematician
opens many boxes, then chooses one unopened box and
predicts the number it contains. The mathematicians do not
communicate at all during this exercise. Incredibly, the
axiom of choice provides a strategy whereby all the pre-
dictions are correct except possibly one!

The number of mathematicians is not important, as long
as it’s finite. The number of boxes doesn’t matter either.
And the contents of the boxes could be changed to any-
thing—sets of real numbers, sets of sets of real numbers,
whatever.

Paradoxes like these are often used to argue that the
axiom of choice is false. Remarkably, a graduate student at
Harvard, Eliot Glazer, has recently shown that the axiom of
choice isn’t needed in one version of the above puzzle. If
there are as many boxes, each containing a real number, as
there are sets of real numbers, then a strategy exists in
which, again, no more than one prediction is wrong!

The Unexpected Hanging

This popular paradox is also about knowledge. It has been
written about extensively.9 Since attitudes toward capital
punishment have evolved, today it is more often framed as
the paradox of the surprise exam:

A teacher tells a class that they will have a test the next
week and that the day of the test will be a surprise. A group
of classmates discusses the situation over lunch. One says,
‘‘It can’t be Friday. If we don’t get a test by Thursday, then
the test will have to be on Friday, and it wouldn’t be a
surprise.’’

After a few minutes, a classmate adds, ‘‘And it can’t be
Thursday either. If we aren’t tested by Wednesday, we’ll
know it’s either Thursday or Friday, and since Friday has
already been logically eliminated, we’ll know it’s Thursday,
and it won’t be a surprise.’’

Eventually, the (very bright) students conclude that
logically no day is possible for the exam. It’s a surprise
then, when the exam comes on Monday.

The general feeling among philosophers is that the
paradox has been completely explained. The only problem
is, which of the many explanations is right?

First, the number of days is irrelevant. The paradox can
be abbreviated to the teacher saying simply ‘‘There will be
an exam tomorrow and it will be a surprise.’’ At this point,
the solution seems immediate: no one, especially the stu-
dents, will believe the teacher.

Philosophers have formulated this solution using three
principles of knowledge:

1. KT: If you know something, then it’s true.

2. TK: We know all tautologies (logically true

statements).

3. MPK: If we know A and we know that A implies B,

then we know B.

The students are told E (the exam is Monday) and that
they won’t know E. Using the three principles, one can
prove that they indeed know E, a contradiction. Hence one
must either reject one of the three principles or else reject
one of the premises, E, or that the students don’t know E.10

I’m happy to reject a premise.
But knowledge is tricky. Perhaps belief makes more

sense here. One can do a similar deduction from E and not
believing E. We don’t have the first principle (some of us
believe things that aren’t true), so we’ll need two more:

20. TB: We believe all tautologies.

20. MPB: If we believe A and we believe that A implies

B, then we believe B.

4. CB: Our beliefs are consistent.

5. BB: If we believe A, then we believe that we

believe it.
Again, this leads us to reject the premise. If BB seems a

stretch, I offer DD:11

50. DD: If we believe A, then we doubt that we doubt

it.

Finally, the approach of philosophers Montague and
Kaplan12 reduces the paradox to the sort of self-referential
statement we discussed earlier:

You do not and will not know
that this very statement is true.

Most solutions to the paradox blame the teacher.13

6‘‘A Peculiar connection between the axiom of choice and predicting the future,’’ Am. Math. Monthly 115:2 (2008), 91–96.
7Exactness. Math. Intelligencer 36:4 (2014), 98–101.
8Wikipedia has a page on hat problems, but I recommend ‘‘An introduction to infinite hat problems,’’ by Chris Hardin and Alan Taylor, Math. Intelligencer 30:4 (2008),

20–25.
9For a start, see Martin Gardner, The Unexpected Hanging and Other Mathematical Diversions, University of Chicago Press, 1969.
10This is all laid out in Tymoczko and Henle, Sweet Reason, 1st ed. (but not 2nd ed.), pp. 420–428, Freeman, 1995.
11I’ll put proofs of all these on the column website.
12‘‘A paradox regained,’’ Notre Dame J. Formal Logic 1:3 (1960), 79–90.
13As a teacher, I think this is healthy. I recommend it to my students. Like most of my recommendations, it is followed inconsistently.
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Likelihood
There are numerous paradoxes of probability and statistics.
We can’t deal with them all. The favorite of anyone
teaching Probability 101 might be the numerical fact that in
a random group of 23 people, the chance that two of them
have the same birthday is greater than half. That’s simply
the calculation

1 � 364

365
� 363

365
� 363

365
� � � 343

365

� �
� 0:507 :

The Two-Envelope Paradox

This is an elegant conundrum. Two sealed envelopes, each
containing money, are prepared. One of the envelopes
contains twice as much money as the other, but the
amounts are unknown. The envelopes are shuffled and
then distributed to two people. The recipients are then
given the opportunity to trade envelopes.

One of the two might reason like this:

Call the amount in my envelope A. If I switch, there’s
a 50% chance that I will gain A and a 50% chance that
I will lose A/2. My mathematical expectation from
switching is

1

2
ðAÞ þ 1

2
�A

2

� �
¼ 1

4
A:

That’s a positive expectation, so I should switch.

But the other person could reason the same way. It can’t be
that both have a positive expectation. If that were so, they
might greedily spend the rest of their lives changing
envelopes back and forth!

I have sent my readers to Wikipedia many times, but I
think for this paradox the discussion there is excessive and
confusing. Instead, consider this: First, the problem with
the above reasoning is that A changes value in the com-
putation. Suppose, for example, the sums of money are $10
and $20. Then the A above is sometimes $10 and some-
times $20. The correct reasoning is this:

If I switch, there’s a 50% chance that I have $10 and
will gain $10 and a 50% chance that I have $20 and
will lose $10. So my expectation is

1

2
ð10Þ þ 1

2
ð�10Þ ¼ 0:

Since the expectation for changing is 0, there is no
reason to switch.

That explanation works if the probabilities are truly 1
2, but

that may not be the case. To have a genuine paradox, it must
be the case that each person knows that no matter what their
envelope contains, the expectation from switching is posi-
tive. For that we need to know the probabilities involved.

Suppose that whoever is organizing this has many
possible amounts to put in the envelopes and chooses the
smaller amount to be S with probability PrðSÞ. Then if you
open your envelope and see S dollars, the smaller amount
is either S or S/2. The probability that S is the smaller
amount is

PrðSÞ
PrðSÞ þ PrðS=2Þ :

and the probability that S/2 is the smaller amount is

PrðS=2Þ
PrðSÞ þ PrðS=2Þ :

That makes the expectation

PrðSÞ
PrðSÞ þ PrðS=2Þ ðSÞ þ

PrðS=2Þ
PrðSÞ þ PrðS=2Þ � S

2

� �

¼ S

PrðSÞ þ PrðS=2Þ PrðSÞ � 1

2
PrðS=2Þ

� �
;

which is positive if PrðSÞ is always greater than 1
2 PrðS=2Þ. In

that case, you should always switch, and we might have a
real paradox. But is it possible for PrðSÞ always to be

greater than 1
2 PrðS=2Þ?

Indeed it is! Here’s a simple example. The possible
amounts are 1; 2; 4; 8; 16;, and we set the probability that
the smaller amount is 2n to be :3 � :7n. With that, Prð2nÞ ¼
:3 � :7n is always greater than 1

2 Prð2n=2Þ ¼ 1
2 � :3 � :7n�1,

since

:7n [
1

2
� :7n�1 :

From this, the expectation for switching when you see 2n is

2n�4. That’s always positive.
Furthermore, the probabilities are totally reasonable.

They are all positive, and they add up to 1:

:3 þ :3 � :7 þ :3 � :72 þ � � � ¼ :3 � 1

1 � :7
¼ 1 :

The argument that both people will improve their expec-
tations by switching is correct!!!

Paradox?
Ah, but this, too, can be explained. That the expecta-

tions for both increase when switching is crazy—except
that there is one way in which it’s not crazy.

Let’s look at your expectation before you’re given an
envelope. You find it by adding up the products of the
payoffs times their probabilities:

E ¼
X
S

S � PrðSÞ :

But we’re given that PrðSÞ is always greater than 1
2 PrðS=2Þ,

so if E is finite, then

X
S

PrðSÞ [
X
S

1

2
PrðS=2Þ ;

and so

E ¼
X
S

S � PrðSÞ [
X
S

S

2
� PrðS=2Þ:

But the sum over all S is the same as the sum over all S/2—
in both cases we’re just including all possible envelope
amounts. So we actually have
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E ¼
X
S

PrðSÞ � S [
X
S

S

2
� PrðS=2Þ ¼ E:

That looks impossible, but what about the example earlier.
How did that work? What is the expectation when the sums
are all 2n and Prð2nÞ ¼ :3 � :7n? The answer isX
n � 0

PrðSÞ � S ¼
X
n � 0

:3 � :7n � 2n ¼
X
n � 0

:3 � ð1:4Þn ¼ 1:

And that’s the explanation. If your expectation is infinite
and you increase it, it’s still just infinite. No paradox!

And once again, the art of the impossible touches the art
of infinity.

Simpson’s Paradox

Simpson’s paradox is more serious and more mystifying
than the two-envelope paradox.14 Something odd can
happen when data are aggregated (combined). An espe-
cially clear example is that of two Yankee ballplayers,
David Justice and Derek Jeter. Justice had a higher batting
average than Jeter in 1995 and 1996, but when the two
years are put together, Jeter had the higher average.

1995 1996 1995 + 1996
Jeter 12/48 183/582 195/630

(.250) (.314) (.310)

Justice 104/411 45/140 149/551
(.253) (.321) (.270)

The problem infests statistical studies. Much has been
written about it. The fact that it appears in the Stanford
Encyclopedia of Philosophy tells me that interest is wide
and that the phenomenon could be considered art.

The expert on Simpson’s paradox is Judea Pearl, author
of many papers on the subject and of the textbook
Causality.15 Pearl has resolved the paradox in the sense
that he has algorithms for deciding, given a case, whether
the aggregated data or the disaggregated data should be
respected. That’s an accomplishment, but it doesn’t quite
neuter the paradox. There is still the possibility, given
almost any set of data, that a new classification, a new way
to carve up the data, will arise.

For an example, take the data on the efficacy of the flu
vaccine, data that appears to show that vaccination
improves your chances of avoiding the flu by 40%. This is a
large data set, over 300 million people. But I can divide the
data into two sets in a way that might cast doubt on the

conclusion. In one half, failing to take the vaccine
improves your chances of avoiding the flu by more than
50%. In the other half, the same is true—failing to take the
vaccine improves your chances of avoiding the flu by more
than 50%!16

I chose the sets explicitly to achieve this outcome. But
that doesn’t mean that there isn’t some important factor
associated with the sets. And if not, there are many other
ways to divide the data to get similar results.

It is often said (and Pearl says it too) that correlation
doesn’t imply causation. It may be that no statistical method
can prove causation.17

Politics
The mathematics of social choice is full of delightful bits,
and many of the bits involve impossibility. The most
famous of these is Arrow’s impossibility theorem, about
voting systems. There’s also impossibility in fair division
theory. But what I find most fun is the impossibility
involved in apportionment. It started early and involved
names you’re likely to be familiar with: George Washing-
ton, Thomas Jefferson, Alexander Hamilton, John Quincy
Adams, and Daniel Webster.

Given the size of the United States House of Represen-
tatives, the apportionment problem is the problem of
deciding how many representatives should be given to
each state. The numbers should be, as far as possible, in
proportion to the populations of the states. But you can’t
give states fractions of representatives. A number of the
founding fathers came up with apportionment methods.
What I find especially amusing is that Hamilton and Jef-
ferson, who disagreed so often on policy, even went so far
as to devise different mathematical procedures for
apportionment.

What can go wrong? Suppose a state ought to have, say,
7.6 representatives. Then giving the state 7 or 8 represen-
tatives seems okay. But giving it 6 or 9 seems wrong.
Jefferson’s method can mess up in this way. Hamilton’s
method can’t.

Every ten years, after the census, the House gets reap-
portioned. What can happen with some methods is that a
state with a low growth rate might gain a seat in Congress,
while a state with a higher growth rate might lose one.
Hamilton’s method sometimes does this.

An obvious criterion for a method is that a smaller state
should never get more representatives than a larger state.
Neither Hamilton’s nor Jefferson’s method makes this mis-
take, but others do.

14Noticed by Karl Pearson and Udny Yule around 1900 but named for Edward H. Simpson, who rediscovered it fifty years later.
15Cambridge University Press, 2000, 2009.
16I’ll post the data on the website.
17What? You want to know whether I got my flu shot?

That’s a personal question.

I just work here, okay?
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That’s history. But in 1980, Michel Balinski and Peyton
Young proved that every possible apportionment method
is prone to at least one of these errors!18

That Magic Trick
In my last column, I promised you an explanation of my
infinite magic trick. In brief, two infinite decks comprising
the positive and negative integers

-36
-35
-34
-33
-32
-31

-37
-38
-39
-40
-41
-42

are shuffled together,

-37
-36
-35

-38
-34

-39
-40

-35
-34
-33

-41
-42

-43

and then N cards are dealt out to each of V volunteers. The
volunteers add the numbers on their cards, writing down
the sum. Then the volunteers even themselves up (when
one meets another and the difference between their sums is
at least 2, the larger sum is reduced and the smaller sum
increased by the same amount so that the difference
between them is no more than 1). Surprisingly (I hope it’s
surprising), when all the volunteers have evened out their
sums, all the sums are the same.

To show that the trick works, I have to show that the
sum, S, of all the numbers on the cards dealt out is a
multiple of V, so that after the exchanges, the scores will all
equal S/V. That’s equivalent to showing that S mod V is 0.

To find S mod V , we need to look at the numbers on
the cards only modulo V. If we take the example in the
column with, say, V ¼ 5, then the decks look like this:

4
0
1
2
3
4

3
2
1
0
4
3

since �36 � 4 mod 5, (4 � ð�36Þ ¼ 40, which is divisible
by 5), �35 � 0 mod 5; and �37 � 3 mod 5,
�35 � 2 mod 5.

Notice that in both decks, every run of five cards has one
each of every value. In the blue deck, the values are in this
order: 3, 2, 1, 0, 4 (repeated indefinitely). In the red deck,
the values are in the opposite order: 4 0 1 2 3 (repeated
indefinitely).

The principle that Norman Gilbreath discovered is that if
you shuffle together two such decks (one repeating a cer-
tain sequence of length k over and over and the other
repeating the same sequence except backward), then the
bottom k cards of the shuffled deck will contain the
sequence (but possibly rearranged). Further, the next k
cards will also contain the sequence, and the next k cards
will too, and so on throughout the deck. In the example in
the column,

-37
-36
-35
-38
-34
-39
-40

you can see how this works.

18For a nice account of this, see Vicki Powers. Proportional (mis)representation: the mathematics of apportionment.’’ Available at http://www.mathcs.emory.edu/

*vicki/talks/Apportionment_Sept2012.pdf.
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3
4
0
2
1
1
0

This means that in adding up the cards dealt out, we are
adding up all the numbers modulo V,

0 þ 1 þ 2 þ � � � þ ðV � 1Þ ;
a total of N times, that is,

S ¼ N ð0 þ 1 þ 2 þ � � � þ ðV � 1ÞÞ ¼ N
ðV � 1ÞV

2
:

This will be a multiple of V if V � 1 is even or if N is even.
When I perform the trick, if V � 1 and N are both odd, I
will deal myself in, adding one to V and making V � 1
even. This will guarantee that S is a multiple of V, and so all
volunteers end up with the same sum.

Finally, here’s a proof of Gilbreath’s principle in
pictures:

Suppose one deck repeats a sequence of length k over
and over and the other repeats the same sequence back-
ward. I’ll represent the sequence as a blue arrow. Here are
the decks:

k

In the shuffled deck, the first k cards will contain, say, j
cards from the left deck and k � j cards from the the right
deck:

j
k-j

But as you can see, this means that the first k cards of the
shuffled deck will have the complete sequence—though
probably in a different order.

That’s the first k cards of the shuffled deck. But look at
what we have now:

The left deck is once again repeating a k sequence. It’s a
k sequence consisting of the top k � j cards of the old
sequence followed by the bottom j cards of the old
sequence—
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—and the right deck repeats the same new sequence but
backward. Consequently, the reasoning that showed that
the first k cards consist of all the cards in the sequence
shows that the same is true for the second k cards.

And this continues throughout the deck.
Questions? Comments? I can be found at pleasingmath@

gmail.com.
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