
From Chapter 3:

3.7 Application: Paying Back Your Student Loan

Student loans, mortgage loans, and retirement accounts are all quite similar
and surprisingly complex mathematically. Most customers are unprepared to
check the bank’s calculations. The mathematics is partly continuous (quan-
tities changing all the time) and partly discrete (quantities changing at fixed
intervals). Appropriately, the mathematics we use to describe student loans
will be partly continuous and partly discrete.

Let’s say you’ve borrowed $10,000 at 7% interest. Without payments, the
amount you owe, the principal L, increases at a rate proportional to itself,

L′ = .07L dollars per year.

We’ve seen equations like this before in the example of the money market
account in Chapter 1. We can use this equation, which models continuous
change, even though interest is usually calculated monthly, which is a discrete
change. The accuracy we lose by assuming continuous change is not much
compared to the insight we’ll gain and the calculations we can make.

Suppose you’ll be making payments of $150 a month. That’s $1800 per year,
and since we’re measuring t in years, we adjust our continuous model so that
it becomes

L′ = .07L− 1800 dollars per year.

If we enter the equation into an integrator, along with initial value L(0) =
$10, 000, we’ll see the solution to the resulting initial value problem, and we’ll
see our progress in repaying the loan.
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In particular, we can see that the loan will be paid back in about 7 years.

What if we initially borrow amounts other than $10,000? Here’s a picture of
solutions to L′ = .07L− 1800 with three different initial values for L(0).
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The picture shows how different initial values (different loan amounts) fare.
With monthly payments of $150, small loans are paid back sooner and large
loans later (or not at all). Of course, that’s why large loans require large
monthly payments.



Laboratory: Student Loans

In this laboratory, you’re going to do a little financial planning. You’re going
to test a number of payback strategies. To keep things manageable, let’s
assume a constant 7% interest rate throughout.

Assignment #1:

1. As the preceding graphs show, if the initial loan is too large, it will never
be repaid with monthly payments of $150. Where’s the break-point?
That is, what is the smallest loan that will never be repaid at the rate of
$150 per month?

2. Student loan payments are generally set so that the loan is paid back
after 10 years. What should the monthly payment be to pay back $10000
in exactly 10 years?

3. Find an approximate value for L(1), the amount of loan principle at the

end of one year, for the system:

[
L′ = .07L− 1800

L(0) = 10000

]
using Euler’s

method of sums with ∆t = .2.

4. Find the exact (or nearly exact) solution to the system in the previous
problem using an integrator. Compare your answers.



5. In reality, students make loan payments once a month and interest
accrues once a month. Finding the value of L using Euler sums with
discrete steps of ∆t = 1

12 is another way of solving (approximately) the

initial value problem

[
L′ = .07L− 1800

L(0) = 10000

]
. What is the value of L

after one year with this method?

Our student loan examples above are based on federal rules prior to 1994.
New rules put into effect by the Clinton administration that year eased the
repayment of student loans. The idea behind the rule was that the payment
rate should be a fixed percentage of the payer’s income after graduation.
Suppose, for example, you want to teach when you graduate. You might
make as little as $20,000 per year. Monthly payments of $150 would be very
difficult. $100 might be more manageable. $150 per month is $1800 per year,
or 9% of your salary, while $100 per month amounts to 6% of your salary.
But you can expect your salary to grow at a modest rate, say 5% a year, and
so your payments will increase. To model this, we need a pair of equations,
since there are two quantities changing, the loan amount L and your salary
S.


