Self-Scaling Reinforcement: A new Algorithm for learning
Continuous Control

Hamid Benbrahim
Judy A. Franklin

GTE Laboratories Incorporated
40} Sylvan Road
Waltham, MA (2254
e-mail: hbenbrahim@ gte.com
jtranklin@gte.com

Abstract.

This article presents a new reinforcement learning
algorithm, The algorithm generates a range of continuous
real-valued actions, and the reinforcement signal is self-
scaled, This alleviates the problem of choosing an
appropriate learning rate and increases the learning speed.
The algorithm is demonstrated within the actor-critic
learning control architecture using a CMAC input
representation. We apply the algorithm to a hardware ball
balancer and show improvement in learning time and
accuracy over similar methods.

1 Introduction

Much of the current research in applying reinforcement
techniques to control/decision problems has suffered from
two handicaps: the action outputs arc restricted to a small
finite set; and the operation is governed by learning rates
for which it is hard to find appropriatc values, Here we
explore how to generate a continuous range of action
outputs, and how to do so with parameters that the system
adapts itself in order w improve its performance. We use a
reinforcement algorithm that we term Self-Scaling
Reinforcement (SSR); that is, the system automatically
scales the reinforcement signal to enable more appropriate
step sizes in updating the lcarning weights.

S8R is built upon Gullapalli’s SRV {Stochastic Real-
Valued) algorithm [Gullapalli-94}]. In studying and
comparing these methods for control, it is essential to test
them on actual systems. Currently we apply reinforcement
learning methods 1o the control of a ball balancer, a
hardware implementation of a neural network control
task— balancing a ball rolling on a tilt-ablc onc
dimensional beam so that it docs not hit the bumpers at
the ends. The ball balancer task is a conceptual successor
to the pole balancer task [Barto-83].

2 The Ball Balancer Task

The ball balancer i1s a beam that a motor can turn
clockwise and counter-clockwise, with different torques. A
metal ball rolls freely along the beam. It is kept from
falling off by a fence and two bumpers at either end. A
pressure sensor measures the ball's position and a
potentiometer measures the beam's angle. The velocities
are obtained by subtracting consecutive readings.

Every time step (20 steps per second) a compuier reads the
ball's position and speed, and the beam's angle and angular
velocity, The reinforcement learning algorithm gencrates
an action to be sent to the motor, When the hall hits a
bumper, the sysiem gets 4 reinforcement r=-1. otherwise it
gets =0, Figure 1 shows the ball balancer.

We previously reported success in applying the SRV
algorithin to the ball balancing task [Gutlapalli-94].

Ball -mn . Q
Motor ..
Q N\

Figure 1: The Ball Balancer

in the Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, held June 13-15, 1994 in

New Haven, CT.



3 The Stochastic Real-valued (SRV)
Algorithm

For completeness, we start by examining Williams’
[Williams-92] statistical gradient following algorithm that
uses a stochastic output unit. This unit is a Gaussian
random number generator with mean L and standard

deviation G. For every input vector x, the algorithm
generates L{X) and G(X). These are used to generate the
action y(x) according to the probability distribution:

_(y—u)2
2
e 20 , (l)

gly) = 55

where the input vector x is omitted for clarity.

The learning algorithm is governed by a weight vector w,
that is updated by:

wit+ 1) =w(t)+a(r —Tie{w), )

where O is a learning rate, r is the reinforcement and T is
a reinforcement base line, a prediction of r. (T —T) is a

factor that measures the difference between actual and
predicted reinforcement. ¢{w) 15 a measure of how eligible
cach weight is for updating.

Williams defines the characteristic eligibility e(w) by the
cquation;

alng

e(w)=—— (3)

ow
To better understand how this algorithm works let us

develop these equations for the case where linear units
produce p and o:

Hix)= w;{x, and o(x) = w’(l,'x.

dlng dp _ (y—m)
a ow, o

e(wp) = x, and

. 2
e(wc)zalng dc__(y—

d6 ow, o

The weight vectors are updated as follows:

wy(t+ D) =w () +a,(r r)(y u) , @)

wolt+ ) =wga(t)+oag(r—

okt DR
=

Note that if the output yiclds a reinforcement better than
predicted, W, will be updated 1o move W toward y. This

will increase the probability that y is the action to he
chosen next time the same input x occurs, And if r is less
than predicted, [l will move away from y to decrease this

probability. In the case of w the standard deviation
increases or decreases to determine the extent of action
domain exploration. Williams proves the convergence of
these types of algorithms.

Even though these methods converge, we found that in
practical applications, the learning is very slow and it is
very hard to find appropriate leaning rates, Notice also that

when O is very small, the term 1/ G * averflows.

Gullapallt's SRV algorithm presents a significant
improvement [Gullapalli-90]. It updates the unit's
parameters as follows:

w (t+1)=w, (t}+ o, (r—T}

yzwow o
()

Iw,

6 =k(1-T1), (7

where k is a multiplying factor. It is assumed here that the
maximum reinforcement is 1. In gencral this equation
would be

o = k(max(r) —T).

When the system has learned. the predicted reinforcement
becomes close to the maximum reinforcement and ©
becomes very small. This means that the action will be
essentially equal to {1, and thus the search will be

stopped.

. _
In the example where [{x}=w X, the adaptation

equation for Wp(t) becomes

w (t+h=w, ()+a,(r-

f)wx’ (8)
[8)



r-(qin-1) - yq(n)} (16}

where O<y<1 is a constant gain. The idea is that the critic
predicts discounted future reward. The critic solves the
problem of "delayed” reinforcement via computing a
difference in successive predictions in cquation {16) and
via another mechanism called eligibility traces. Eligibility
traces are moving average filters of the inputs. They
provide a decaying history that aids the algorithm in
leamning, when the reward signal is delayed. Successive
predictions and eligibility traces are used here for ball
balancing just as they arc used by Barto et al. [Barto-83]
in pole balancing.

. CMAC Neural Network

The sensor values from the ball balancer are inputs to a
CMAC inputl representation. The CMAC was first
proposed by Albus [Albus-75] and has been used
extensively by Miller et al, [Miller-90] in robotic learning
control. The CMAC combines table lookup with the
generalization and nonlinearity of arrays of overlapping
receptive fields, each array offset from the others. It is a
more powerful representation than simple boxes and
provides a faster avenue for learning in nonlinear networks
than say a backpropagation network, We will not describe
the CMAC here. The reader is referred to the above
references for more details. The outputs of the CMAC
representation become the inputs x to the SSR or SRV
algorithm (the actor). The same inputs are used for the
critic,

6 Results

1000 — |
ué |
£ 800 T :
g SSR |
S 600 T
5 i————=SRV |
© |
£ 400 ¢+ I
3
I |
@ 200 + =
Q ! ]
=]
w
O b T : § t
(@] (@] (=] o ) o o o
S 8 B ¥ g2 8 g

number of trials
Figure 2; Learning curves

Figure 2 shows the learning curves for SRV and SSR.
The curves represent the number of successtul steps versus
the number of trials. Each trial ends when the ball fails.

We found that SSR learns faster than SRV. After 350
trials, which corresponds to about 1{) minutes, SSR lcarns
to keep the ball balanced indefinitely, while SRV learns
after 620 trials. We do not show an average of several
runs, however, these results are consistent with all our
experiments.

7 Discussion

We showed in this paper that SSR learns to balance the
ball cven faster than SRV and does not require a learning
rate, while it was very difficult to find an appropriate
learning rate for SRV. SSR continuously moves toward
the actions that yield high reinforcement without
overshooting. SRV follows a gradient to maximize the
expected reinforcement. In other words SSR moves toward
a specific goal while SRV follows a specific direction.

Even though SRV and SSR vield positive results, it has
not yet been proven that they do, in fact, converge. With
our experimentation with the ball balancer we found that
SRV converges only when using small learning rates, and
SSR converges constantly.

Our next step is to develop an algorithm that combines
SSR with real-valued QQ Learning. We anticipate better
results because of the advantages that Q learning has over
the actor-critic method [Watkins-89].

8 Acknowledgments

We gratefully acknowledge Oliver Selfridge and John
Vittal for thoughtful suggestions and continual support,

9 References

[Albus-75] Albus, J. S. (1975). "A New
Approach to Manipulator Control:
The Cerebellar Model Articulation
Controller (CMAC)" September 1975
ASME Journal of Dynamic Systems,
Measurement, and Control, pp. 220-
227



Gullapalli's algorithm shows great improvement in the
learning speed, and is successtul in different applications
{Gullapalli-93, Gullapalli-941.

4 The Self Scaling Reinforcement
algorithm (SSR)

The methods above suffer from a major handicap: If the
system gets a very large reinforcement, let us say infinite,
the weights will overshoot and therefore impede the
system performance. If the reinforcement range of
variation is known, the learning rate can then be adjusted
to prevent overshooting. When this is not the case,
however, a very small Jearning rate is used, and a slow
learning process ensues.

SSR is based on the concept that if a certain action yields
an infinite rteinforcement then it should have its
probability greatly increased. Moreover, since it is not
guaranteed that the system will reccive the same level of
reinforcement for different input vectors, the notion of
infinite reinforcement should be flexible. The best
reinforcement the system gets is considered infinite and
the worst is considered negatively infinite. We keep track
of the maximum and minimum reinforcement, rmax and
rmin respectively, and compute a scaled reinforcement T
as follows:

I =exp{r —rmax)—exp(rmin—r). (%

Notice that if r = rmax., then
T =1-exp(rmin —rmax)=1-¢, and if r = rmin,
then T =exp(rmin—rmax)—1=¢€g—-1. € is very
small when rmin-rmax << 0; consequently, we will
temporarily ignore it for clarity purposes.

We compute rmax and rmin according to:
if r > rmax then rmax =r, (10
if r < rmin then rmin =T, (11)
rmax(t+1) = Armax(t)+(1-A)r, (12)
rmin(t+1) = Armin{t) + (1 —A)r, (13

where A is a positive number < 1. Equations (10)-(13)
work together as follows. rmax increases as the system
gets higher reinforcement values (cq 10). rmin decreascs as
the system gets lower reinforcement values (eq 11).
Equations {12) and (13) allow the difference between rmax
and rmin to converge, as the system leamns, toward zero.
rmin increases when low reinforcement values are
infrequent {eq 13). We deliberately decrease rmax in order

to filter out large spurious reinforcement values (eq 12).
We have as yet no proof of convergence, except hy
empirical observation.

The algorithm's adaptation equations are

" 0
W, (D= w, () + 3y~ (14
ow

n
o(t+1) =yo(t) + (1 — y)rmax —rmin), (15)

where Yis a positive number < 1. It is used as an
averaging factor.

SSR is reminiscent of gain adaptation in supervised
lcarning systems [Jacobs-87]. Equation (14) is of the form
w(t+1) = w(t) + aex, where ¢ is the error signal and o is a
positive gain < 1. When r>rmax, T=1. This is cquivalent
to having an error e=(y-p) and a gain a=1. When r<rmin.
r=-1, e=-(y-u) and o=1. If 1 is mid-distant from rmax and
rmin, f:O, gquivalent to a=0. Thus, when T Tanges
continuously from -1 to 1, o ranges continuously from 1
10 0 then to 1, SSR adapts the magnitude of the gain and
the sign of the error. The sign of the error depends on
whether the reinforcement for the actual action is better or
worse than average, and the magnitude of the gain depends
on how close the reinforcement is to rmax and rmin. As
the system learns {rmin - rmax) converges toward zero and
thus £ (i.e. exp{rmin - Tmax)) converges toward 1.
Consequently, T converges toward zero. In terms of gain
adaptation this behavior means that o decreases as the
system approaches its target,

5 Learning Architecture

. Actor-Critic

The actor-critic architecture deals effectively with minimal
reinforcement. The actor outputs the action or control, and
the critic evaluates the action, given the “raw"
performance evaluation r. The role of the critic is to
assign an evaluation (o each action, Without the cnitic, the
system would receive only a () or -1. Since the system
gets a nonzero reinforcement only when the ball fails, it
needs the critic to build an evaluation function for the
statcs that arc far away from the failurce states. As a resull
the system learns that having the ball in the center of the
beam with a very small speed is the best situation.
Without the critic, this situation would look to the
system like any nonfailure situation. The critic network
outputs a prediction q(n) of the reinforcement [Sutton-84].
Using this prediction, we obtain the following modified
reinforcement signal:



[Barto-83]

{Guilapalli-90]

[Gullapalli-93]

[Gullapalli-94]

[Jacobs-87]

iMiller-90

[Sutton-84]

[Watkins-89]

Barto, A.G., Sutton, R.S., Anderson,
C.W. (1983). “Neuronlike elements
that can solve difficult learning
control problems.” JEEE Trans. on
Systems, Man, and Cybernetics,
SMC-13, 834-8406, 1983,

Gullapalli, V. (1990). “A stochastic
reinforcement learning algorithm for
learning real-valued functions.” Neural
Networks, 3, 671-692

Gullapalli, V. (1993). “Learning
control under extreme uncertainty.”
C.L. Giles, S.J. Hanson, and J.D.
Cowan, editors, Advances in Neural
Information Processing Sysiems S,
San Mateo, CA, 1993. Morgan
Kaufmann Publishers,

Gullapalli, V., Franklin, J. A,
Benbrahim, H. (1993). “Acquiring
Robot Skills via Reinforcement
Learning.” IEEE Control Systems
Magazine, Vol. 14, February 1994,

Jacobs, R. J. (1987). “Increased Rates
of Convergence Through Learning
Rate Adaptation,” COINS Technical
Report 87-117. Dept. of Comp. and
Info. Science, U. Mass, Amherst,
MA.

Miller, W. T. III, Hewes, R, P,,
Glanz, F. H., and Kraft, L. G. III
(19905, "Real-Time Dynamic Control
of an Industrial Manipulator Using a
Neural-Network-Based Learning
Controller” IEEE Transactions on
Robotics and Automation, Vol. 6,
No. 1, Februrary 1990, pp. 1-9.

Sutton, R.S. (1984). *Temporal
Credit Assignment in Reinforcement
Learning.” Doctoral Dissertation,
Dept. of Comp. and Info. Science. U.
Mass, Ambherst, MA.

Watkins, C. J. C, H, (1989)
“Learning with Dclayed Rewards™
Doctoral Dissertation, Psychology
Department, Cambridge University,
1989,

[Williams-92]

Williams, R.J. (1992} . “Simple
statistical Gradient-Following
Algorithms for Connectionist
Reinforcement Learning.” Machine
Learning, 5, 8-229.



