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We present results from experiments in using several pitch representations for jazz-
oriented musical tasks performed by a recurrent neural network. We have run exper-
iments with several kinds of recurrent networks for this purpose, and have found that
Long Short-term Memory networks provide the best results. We show that a new pitch
representation called Circles of Thirds works as well as two other published representa-
tions for these tasks, yet it is more succinct and enables faster learning. We then discuss
limited results using other types of networks on the same tasks.
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1. Recurrent Neural Networks and Music

Many researchers are familiar with feedforward neural networks consisting of 2
or more layers of processing units, each with weighted connections to the next
layer. Each unit passes the sum of its weighted inputs through a nonlinear sigmoid
function. Each layer’s outputs are fed forward through the network to the next layer,
until the output layer is reached. Weights are initialized to small initial random
values. Via the back-propagation algorithm,' outputs are compared to targets, and
the errors are propagated back through the connection weights. Weights are updated
by gradient descent. Through an iterative training procedure, examples (inputs)
and targets are presented repeatedly; the network learns a nonlinear function of the
inputs. These networks have been explored by the computer music community for
classifying chords? and other musical tasks.®*

A recurrent network uses feedback from one or more of its units as input in
choosing the next output. This means that values generated by units at time step
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t-1, say y(t-1), are part of the inputs x(t) used in selecting the next set of outputs
y(t). A network may be fully recurrent; that is all units are connected back to each
other and to themselves. Or part of the network may be fed back in recurrent links.

Todd® uses a Jordan recurrent network® to reproduce classical songs and then
to produce new songs. The outputs are recurrently fed back as inputs as shown
in Figure 1. In addition, self-recurrence on the inputs provides a decaying history
of these inputs. The weight update algorithm is back-propagation, using teacher
forcing.” With teacher forcing, the target outputs are presented to the recurrent
inputs from the output units (instead of the actual outputs, which are not correct
yet during training). Pitches (on output or input) are represented in a localized
binary representation, with one bit for each of the 12 chromatic notes. More bits can
be added for more octaves. C is represented as 100000000000. C# is 010000000000,
D is 001000000000. Time is divided into 16th note increments. Note durations are
determined by how many increments a pitch’s output unit is on (has value one).
E.g. an eighth note lasts for two time increments. Rests occur when all outputs are
off (zero).

Input Units. Self-Recurrent on
Left, Non-recurrent on Right

Fig. 1. Jordan network, with outputs fed back to inputs.

Mozer’'s CONCERT?® uses a backpropagation-through-time (BPTT) recurrent
network to learn various musical tasks and to learn melodies with harmonic accom-
paniment. Then, CONCERT can run in generation mode to compose new music.
The BPTT algorithm?!%!1 can be used with a fully recurrent network where the
outputs of all units are connected to the inputs of all units, including themselves
(see Figure 2). The network can include external inputs and optionally, may include
a regular feedforward output network. The BPTT weight updates are proportional
to the gradient of the sum of errors over every time step in the interval between
start time t9 and end time ¢;, assuming the error at time step t is affected by the
outputs at all previous time steps, starting with ¢y. This “unfolding of time” is
BPTT’s alternative to teacher forcing. BPTT requires saving all inputs, states, and
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errors for all time steps, and updating the weights in a batch operation at the end,
time t;. One sequence (each example) requires one batch weight update.

[~
A

> Optional Feedforward
Cutput Network

O

Recurrent Network

External Inputs

Fig. 2. A fully self-recurrent network with external inputs, and optional feedforward output
attachment. If there is no output attachment, one or more recurrent units are designated as
output units.

CONCERT is a combination of BPTT with a layer of output units that are
probabilistically interpreted, and a maximum likelihood training criterion (rather
than a squared error criterion). There are two sets of outputs (and two sets of in-
puts), one set for pitch and the other for duration. One pass through the network
corresponds to a note, rather than a slice of time. We present only the pitch rep-
resentation here since that is our focus. Figure 3 shows the chromatic circle (CC)
and the circle of fifths (CF), used with a linear octave value or pitch height (PH)
for CONCERT’s pitch representation, called PHCCCF. Ignoring octaves, we refer
to the rest of the representation as CCCF. Six digits represent the position of a
pitch on CC and six more its position on CF. C is represented as 000000 000000,
C# as 000001 111110, D as 000011 111111, and so on. Mozer uses -1,1 rather than
0,1 because of implementation details.

For chords, CONCERT uses the overlapping subharmonics representation of
Laden and Keefe.? Each chord tone starts in Todd’s binary representation, but 5
harmonics (integer multiples of its frequency) are added. C3 is now C3, C4, G4,
C5, E5 requiring a 3 octave representation. Because the 7th of the chord does not
overlap with the triad harmonics, Laden and Keefe use triads only. C major triad
C3, E3, G3, with harmonics, is C3, C4, G4, C5, E5, E3, E4, B4, E5, G#5, G3, G4,
D4, G5, B5. The triad pitches and harmonics give an overlapping representation.
Each overlapping pitch adds 1 to its corresponding input. CONCERT excludes
octaves, leaving 12 highly overlapping chord inputs, plus an input that is positive
when certain key-dependent chords appear. Using these representations, CONCERT
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learns waltzes over a harmonic chord structure.

Fig. 3. Chromatic Circle on Left, Circle of Fifths on Right. Pitch position on each circle deter-
mines its representation.

Eck and Schmidhuber!'? use Long Short-term Memory (LSTM) recurrent net-
works to learn and compose blues music. An LSTM network? consists of input units,
output units, and a set of memory blocks, each of which includes one or more mem-
ory cells. Blocks are connected to each other recurrently. Figure 4 shows an LSTM
network on the left, and the contents of one memory block (this one with one cell)
on the right. There may also be a direct connection from external inputs to the out-
put units. This is the configuration found in Gers et al., and the one we use in our
experiments. Each block contains one or more memory cells that are self-recurrent.
All other units in the block gate the inputs, outputs, and the memory cell itself. A
memory cell can “cache” errors and release them for weight updates much later in
time. The gates can learn to delay a block’s outputs, to reset the memory cells, and
to inhibit inputs from reaching the cell or to allow inputs in.

Weight updates are based on gradient descent, with multiplicative gradient cal-
culations for gates, and approximations derived from the truncated BPTT'® and
Real-Time Recurrent Learning (RTRL)® algorithms. LSTM networks are able to
perform counting tasks in time-series.

Eck and Schmidhuber’s model of blues music is a 12-bar chord sequence over
which music is composed /improvised. They successfully train an LSTM network to
learn a sequence of blues chords, with varying durations. Splitting time into 8th
note increments, each chord’s duration is either 8 or 4 time steps (whole or half du-
rations). Chords are sets of 3 or 4 tones (triads or triads plus sevenths), represented
in a 12-bit localized binary representation with values of 1 for a chord pitch, and
0 for a non-chord pitch. Chords are inverted to fit in 1 octave. For example, C7 is
represented as 100010010010 (C,E,G,B-flat), and F7 is 100101000100 (F,A,C,E-flat
inverted to C,E-flat,F,A). The network has 4 memory blocks, each containing 2
cells. The outputs are considered probabilities of whether the corresponding note is
on or off.

aSee Hochreiter and Schmidhuber 199713, Also see Gers et al., 200014 for succinct pseudo-code.
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Fig. 4. An LSTM network on the left and a one-cell memory block on the right, with input,
forget, and output gates. Black squares on gate connections show that the gates can control
whether information is passed to the cell, from the cell, or even within the cell.

Eck and Schmidhuber’s work includes learning melody and chords with two
LSTM networks containing 4 blocks each. Connections are made from the chord
network to the melody network, but not vice versa. The authors composed short
1-bar melodies over each of the 12 possible bars. The network is trained on con-
catenations of the short melodies over the 12-bar blues chord sequence. The melody
network is trained until the chords network has learned according to the criterion. In
music generation mode, the network can generate new melodies using this training.

In a system called CHIME,'%!7 we first train a Jordan recurrent network (Fig-
ure 1) to produce 3 Sonny Rollins jazz/blues melodies. The current chord and index
number of the song are non-recurrent inputs to the network. Chords are represented
as sets of 4 note values of 1 in a 12-note input layer, with non-chord note inputs
set to 0 just as in Eck and Schmidhuber’s chord representation. Chords are also
inverted to fit within one octave.

24 (2 octaves) of the outputs are notes, and the 25th is a rest. Of these 25, the
unit with the largest value is the current note. The 26th output indicates if this is
a new note, or the same note held another time step (16th note resolution). This
network is similar to, and based on Todd’s. After learning the Rollins melodies, the
network is expanded and further trained by reinforcement learning (RL) according
to a set of rules useable by an amateur improvisor. In RL, the network is not ex-
plicitly given the target outputs. It is given a reinforcement value that reflects the
effects of its outputs. The reinforcement is positive if a note is a chord note, in a
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chord’s scale, or if it is a note, not too frequently played, that is appropriate accord-
ing to other jazz theory. To learn to improvise, the CHIME network must generate
sequences of notes in the jazz idiom and be able to interpret sparse feedback, i.e.
reinforcements, that may be delayed in time.

Seeking improved networks, we experimented with LSTM networks, comparing
them with Jordan nets, BPTT and RTRL 6, and finding LSTM to be at least as ac-
curate, and more stable. LSTM’s algorithm is efficient, and does not rely on teacher
forcing. It is incremental (BPTT is a batch operation), so is useable with incremen-
tal reinforcement learning. We revisited pitch and chord representations, pursuing
a better musical representation. We present the results of three sets of experiments,
using LSTM networks, and three different pitch and chord representations: Mozer’s
CCCF and chord representation, the localized binary representation of Todd, Eck
and Schmidhuber, and Franklin, and a new one we call Circles of Thirds.

2. Circles of Thirds Representation

The Circles of Thirds representation is inspired by both the binary and CCCF
representations, and Laden and Keefe’s chord representation. It includes a pitch as
well as a chord representation, and results in a 7-digit value for a pitch or a chord.
Figure 5 shows the four circles of major thirds, a major third being 4 half steps,
and the three circles of minor thirds, a minor third being 3 half steps.

A# F# B G
D D
F#
A Dt
Cc

Fig. 5. At top, circles of major thirds. At bottom, circles of minor thirds. A pitch is uniquely
represented via these circles, ignoring octaves.

Here, a pitch consists of 7 bits. The first 4 indicate the circle of major thirds in
which the pitch lies, and the second 3, the circle of minor thirds. The index of the
pitch’s circle is encoded, unlike CCCF, which encodes the position on the circle. C’s
representation is 1000100, indicating major circle 1 and minor circle 1, and D’s is
0010001, indicating major circle 3, and minor circle 3. D# is 0001100. Because the
7th chord tone is so important to jazz, our chords are the triad plus 7th. Circles
of thirds could represent chords as 4 separate pitches, each encoded as 7 bits for a
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total of 28 bits. However, it would be left up to the network to learn the relationship
between chord tones. We borrowed from Laden and Keefe’s research on overlapping
chord tones as well as Mozer’s more concise representation. The result is a chord
representation that is 7 values. Each value is the sum of the number of on bits from
the Circles of Thirds representation for each note in the chord. For example, the
dominant seventh chord C7 in a 28 bit Circles of Thirds representation is:
1000100 1000010 0001010 0010010
C E G B-flat
The overlapping representation is:
1000100 (C)
)

1000010 (E
0001010  (G)
40010010  (B-flat)

2011130  (C7 chord)

Notice that the dominant seventh chord is composed of the root, third, fifth,
and flat seventh of the major scale. An interesting facet of this representation is
that the third, fifth, and (flat) seventh of the dominant seventh chord all have the
same minor circle. The root and third have the same major circle. This is true
of all dominant seventh chords and is a straightforward ramification of the chord
structure. Other chords will share similar commonalities among their notes in this
representation.

3. Learning Tasks

Our initial experiments combining LSTM networks with the Circle of Thirds rep-
resentation are quite promising. The three tasks are as follows.

3.1. Task 1- Chord Tones

Each of the twelve Dominant 7 chords, C7, C#7, etc. is presented, one at a time, as
input for four increments. The network must first output the tonic, then the third,
then the fifth, and then the (flat) seventh of the chord as output. For example,
the chord C7 is presented as input for 4 increments of the network, and the four
outputs, one on each increment, should be C, E, G, B-flat). The network is trained,
then tested afterward without weight updates. Thus in testing the network is given
only the chord for 4 increments and its own recurrent connections.

3.2. Task 2 - Chromatic Lead-in

As jazz educator Berg!® points out, one effective technique of improvisation is to
use chord tones in creating a melody, and to lead-in to a chord tone with chromatic
pitches just below or just above the chord tone. In task 2, the network is given a set
of 7 pairs of sequences that it must classify. Each sequence contains five pitches. In
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the first sequence, the third note is a chromatic tie between the second note and the
fourth note. Both the fourth and fifth notes are chord tones. The network should
output a 0 at each time step, except the last, when the target is 1 if there is a
chromatic lead-in, and 0 otherwise. The positive sequences are from Berg'®, and all
occur over the Cma7 chord (with the 6th and 9th included as chord tones). There
is no chord input however. The 7 pairs of sequences, each sequence labeled with its
correct final target, are:

c,d,d-,c,c 1 c,d,d,c,c O
c,d,e-ee 1 c,d,dee O
gg-fee 1 gffee 0
e,ga-,a,a 1 eg.gaa 0
a,b,b-,a,a 1 a,b,b,a,a 0
a,a,b-,b,b 1 a,a,a,b,b 0
d,ee-,d,d 1 dee,dd 0

During testing, the network receives each sequence note by note, and the outputs
are recorded, with no weight updates.

3.3. Task 3 - AABA Melody

We created a melody that has the form AABA. The A form is an 8-pitch arpeggio
over the Cma9 chord: C,D,E,G,G,E,D,C. The B form is an 8-pitch improvisation
over the same chord, containing auxiliary pitches'® as follows:
C,F.D#.E.F# A ,G#,F#. This 32 note melody is presented as one example with
32 time steps to the network. The only external input is the representation for the
C pitch, at each increment. When testing occurs, the network receives only the
constant C pitch and does not see the target melody.

4. Results

Table 1 shows, for the 3 pitch representations, results for the 3 tasks. Recall both
the CCCF and Binary representations require 12 inputs, for either a pitch or chord,
and 12 output units if pitches are the outputs. The Circles of Thirds representation
requires 7. There is a bias term used in LSTM that enables the blocks (specifically
the gates) to be “activated” one by one over time. We found a bias of -.1 to work
the best for these tasks. The bias value of block 1 is 0, block 2 is -.1, block 3 is
-.2, etc. The more negative the bias value, the longer it takes the weight updates
to enable non-zero values on the output of the units in the block. An epoch is one
presentation of all examples, and the max error is the maximum output error.
The results are the best we could obtain, varying learning rates (one for output
units, one for blocks), whether there is a direct connection from input to output
units, number of epochs, and number of blocks and cells per block. We aimed for an
output error less than .1. If a .5 threshold is chosen as criterion, learning would take
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Table 1. Comparison of representations on three music tasks.

Represen- Cells/blk Max Direct

Task tation &Num blks Learning Rates Epochs Error I/O Link?
1-Chord CcT 1 cell, 10 blks .5 blk, .2 out 10000 .05 yes
Tones CCCF 1 cell, 10 blks .5 blk, .2 out 10000 A1 yes

Binary 1 cell, 10 blks .5 blk, .2 out 10000 .04 yes
2-Chromatic CcT 1 cell, 10 blks .5 blk, .2 out 10000 .03 yes
Lead-in CCCF 1 cell, 10 blks .1 blk, .05 out 10000 .07 no

Binary 3 cells, 15 blks .15 blk, .05 out 15000 1 yes
3- AABA CT 2 cells, 15 blks .15 blk, .05 out 15000 .06 yes
Melody CCCF 2 cells, 15 blks .15 blk, .05 out 15000 .07 yes

Binary 2 cells, 15 blks .15 blk, .05 out 15000 .08 yes

Note: CT stands for Circles of Thirds representation

a fraction of the epochs shown in the table. The LSTM network perfectly learns the
Chord Tones task, with all three representations, with the same parameters. LSTM
perfectly learns the Chromatic Lead-in task with the Circle of Thirds and CCCF
representations, but with binary representation it is not able to classify all of the
examples. Thinking of them as pairs, it correctly classifies 4 or 5 of the 7 pairs,
misclassifying the positive example as 0. Finally, on the AABA Melody task, all
three representations work perfectly on this difficult task. Here, the LSTM network
needs two cells per block. With 1 cell per block, no representation worked in learning
the B part of the melody without error. Overall, it is clear that LSTM shows a lot
of promise for musical tasks, and that the Circles of Thirds representation compares
well to the CCCF and both are preferable to the binary representation. And the
Circles of Thirds uses the fewest inputs.

5. Results For Feedforward, Elman, and BPTT Networks

Once we had shown that the LSTM network, with the Circles of Thirds representa-
tion could learn to carry out the three tasks, we compared it to both a Feedforward
network (FFN) as well as two other well-known recurrent networks, an Elman net-
work, and a Back-Propagation Through Time network (BPTT). Recall Figure 2
shows a fully recurrent network, with an optional feedforward output attachment.
The BPTT network we used has this configuration, but with a single layer of non-
linear feedforward output units. It should be noted that the BPTT network alone
without the feedforward layer could not learn any of the three tasks. The FFN is
not recurrent, and is just the optional part alone, as shown in Figure 2.

An Elman network!®, as shown in Figure 6 has recurrent links between the
hidden units and a set of input units. The network receives, as input, its last internal
hidden unit values, along with the external inputs provided at each iteration of the
network. It is trained by gradient descent, without any unfolding in time to correct
past errors (so is unlike BPTT in that way).

The FFN and Elman simulations were carried out in the Matlab Neural Networks
Toolbox.



July 15, 2004 14:5 ijait04

10 Judy A. Franklin and Krystal K. Locke

Inputs Units' From Hidden Units
on Left, Moo Recurrent on Right

Fig. 6. Elman network, with hidden unit outputs fed back to inputs.

5.1. Task 1. Chromatic Lead-in
5.1.1. FFNs

When using feedforward networks on the chromatic lead-in task, all five pitches are
presented simultaneously as inputs using the Circles of Thirds representation. The
FFNs used in this experiment classified all fourteen note sequences correctly, both
when single sequences were classified and when all fourteen were classified by the
same network. The FFNs were efficient in this classification. In order to obtain clear
separation between a good and bad result, the FFNs were trained to an extremely
low error, le-10. Even with such a tiny error, the FFNs were able to achieve their
training goal with a reasonable number of training epochs and number of hidden
units within the networks. The learning rate was set at 0.05, which allowed the
network to remain stable in its training while still training quickly. The average
number of training cycles to reach the desired error was 756 epochs. The maximum
number of epochs needed in the 25 trials was 1214 epochs, and the minimum number
was 466 epochs. Fifteen neuron units in the FFN hidden layer allowed for training
success for 25 out of 25 trials.

5.1.2. BPTT

In the recurrent network trials, each 5 pitch sequence is presented, one pitch at a
time. The target output is 0 at each network iteration, except the fifth or last one,
where it is 1 for a positive sequence, and 0 for a negative one. The BPTT network
was run on the chromatic lead-in experiment with both the Circles of Thirds and
the CCCF representations. Using Circles of Thirds, it could learn to classify the 7
pairs of examples exactly. For learning rates of .05 for the recurrent units, and .1 for
the output units, it correctly classified after 15000 epochs, using 15 recurrent units,
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and one feedforward unit, corresponding to the one output for classification. With
only 10000 epochs, and 10 recurrent units, analogous to the size of the successful
LSTM, it could not learn the classification. The BPTT with the feedforward unit
could not learn the task using the CCCF representation. A BPTT network with
only recurrent units, one set up to produce the output, could not learn the task
with either representation.

5.1.3. Elman nets

Effective Elman networks proved to be more difficult to create for this task. In order
to facilitate efficient training, the acceptable error was raised from 1le-10 to le-3.
Any error larger than this led to an inability to distinguish good from bad results.
Stability and error reduction issues led to a low learning rate, 0.0001.

Successful training results were only occasionally obtained for up to three se-
quences, using 100 hidden units. Most trials ended with the error reduction gradient
reaching its minimum well before the desired error was reached, around an error
of 0.01. This error level was not sufficient to correctly classify the sequences. The
inclusion of more training note sequences required the addition of more hidden layer
units, which in turn seriously slowed the training process, and often led to software
instability.

However, if only the first three notes of each sequence were used, Elman networks
did prove to be effective for this task. In other words, the data set used for training
this network was modified. Instead of sets of 5 notes per sequence, the first three
notes of each sequence were used. We refer to these as sequence segments. The
Elman network used for this experiment consisted of 11 hidden layer units using
the tansig function, and 1 logsig output layer unit. In order to facilitate efficient
training, the acceptable error was raised from 1e-10 to le-3. Any error larger than
this led to an inability to distinguish good results from bad. Stability and error
reduction issues led to a low learning rate, 0.001.

While it was certainly possible to include the full 14 sets of sequence segments
of three notes each in the Elman training sets, it was not necessary. Using the first
4 pairs was sufficient to train the network to classify any sequence in the 14 as
good or bad. New sequences which were consistent with the training set were very
strongly classified, within 0.09 of their expected results.

5.2. Task Two. Chord Tone Separation

Using FFNs to separate the chord representation into individual notes was success-
ful. The FFN is given the chord as input using the Circles of Thirds representation.
It has 28 output units, corresponding to the four chord pitches, to be output si-
multaneously. An FFN with 30 hidden layer neurons and a learning rate of 0.5 is
able to correctly extract the individual notes from the chord representation with
an error of le-10. Over 25 trials, the average number of training epochs needed to
reach the desired error was 38462 epochs.
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The BPTT network could not learn this task, whether using Circles of Thirds
or the CCCF representation. Either the outputs (numbering 7 or 12, respectively)
were simply incorrect, or the network was unstable and oscillatory, although the
error did generally decrease by half, from the initial value given the initial random
weights. This behavior applied for various numbers of epochs, number of recurrent
units, and learning rates.

The Elman network could not learn this task either, in its sequential form. It
exhibited similar behavior to the chromatic descent experiments, being able to learn
to produce perhaps 2 or 3 of the sequences. However, we tried using the Elman
network to extract the notes from the chord all at once (all 12 chords as input,
and all 12 sets of four notes output simultaneously) and the Elman network was
able to separate each given chord, in the Circles of Thirds representation, into the
component notes. The network used for this task had 84 input units, 16 hidden
layer units using a logsig function, and 336 output units which also used the logsig
function. The acceptable error was set to le-3, and the learning rate was set to 1.
The high number of inputs and outputs made a higher learning rate preferable. The
higher learning did not noticeably affect stability. The Elman networks performed
the tasks more efficiently than the FFN networks, both in terms of the number of
hidden layer units and the average number of training epochs required to perform
the tasks.

5.3. Task Three. AABA Melody

The FNN cannot learn this task simply because it is so sequential a task that it
does not make sense to use an FFN for it.

The BPTT network was incapable of learning this task using either representa-
tion, and exprimenting with a wide range of number of epochs, number of recurrent
units, and various learning rates. the output squared error was always large after
any number of epochs tried.

The Elman network was also used to attempt to recreate the simple AABA
melody given just the starting note, C.

The first network configuration used had 12 units in its hidden layer and 8 output
units. The learning rate was set to 0.05. The network was given a single input,
C, and was trained to output the A segment of the melody, C,D,D.E,G,G,E,D,C.
During training, the desired error level was never reached. Adjustment of network
parameters did not significantly improve performance, and the network was not
able to create the desired note sequence from the single note input. The partially
trained network was able to create the first and last note of the sequence, but could
not correctly create the other 6 notes. The 6 incorrect outputs were interesting in
that they were either zeros, or they were notes that were misclassified as the input
note, C. The notes that were misclassified as C were only notes that shared a major
third circle, that is, the note E.

The whole AABA sequence was tested, using an Elman network that had 4 input
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units, 40 hidden layer tansig units, and 32 output tansig units. The input training
set was C C D C. The network had a learning rate of 0.05 and an error level of
le-3, as did the other Elman network used for this task. The results for the second
partially trained network show that the first and second note in the A segments of
the melody were correctly classified, while no other notes were.

6. Discussion

After testing and comparing the LSTM network to other recurrent networks on
several simpler tasks, we discovered that the LSTM network is much more stable
and accurate than other recurrent networks. We proceeded to test it on the three
music tasks described in this article, using three different representations. Finally,
we compared the LSTM network with a feedforward network and two other well-
known recurrent networks, BPTT and Elman nets, on the same three tasks. There
is really no comparison. The LSTM network outperforms the other nets and can
very accurately learn to produce the desired behavior. We are convinced that the
LSTM network is the best recurrent neural network for these kinds of tasks, and
probably for many other domains. Our next steps are to more rigorously study its
generalization capability. We are also encouraged by our results with the Circle of
Thirds pitch representation and can imagine combining it with a form of CCCF to
obtain the best features of both. We have experimented with a note duration repre-
sentation that enables learning of MIDI-based performances.?? An impetus for our
study of these recurrent networks for specific musical tasks is our work in reinforce-
ment learning. We are working with reinforcement learning for jazz improvisation
and require a recurrent network that can learn specific notes with high accuracy.
Furthermore, we are currently experimenting with temporal difference (TD) learn-
ing to predict success or failure at a point in the middle of a musical sequence. We
are encouraged by discovering Bakker’s work?! in combining a form of reinforcement
learning called advantage learning, that encompasses TD learning, with LSTM ap-
plied to 2 classic non-Markov tasks (ball balancing and T-maze following). In the
chromatic lead-in experiments, a TD algorithm can be used on the output units to
predict the classification, based on Bakker’s derivation. Our preliminary results are
promising.??
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