Predicting Reinforcement of Pitch SequencesviaLSTM and TD

Judy A. Franklin
Computer Science Department, Smith College
jfranklin@cs.smith.edu

Abstract

We examine the use of a recurrent neural network called
Long Short-Term Memory (LSTM) with a prediction algo-
rithm called temporal difference (TD) to predict the outcome
of a music pitch sequence, whilethe sequenceis being played.
Thisis part of a larger system that will use this predictionin
order to choose pitches to play. e describe our previousre-
sultsusing the LSTM network for musical tasks and then show
itsability to predict a positive or negative outcomefor a short
musical task of chromatic lead-in to a chord tone. Then we
describeits ability to predict positive outcomes when certain
chord tones are played on the last beat of each bar of ii-V-I
chord progressions.

1 Introduction

Reinforcement Learning is a method of machine learning
that takes action, such as playing a note or sequence of notes,
and receives a reward value that indicates the effects of the
action: how good or bad it is. When sequences are to be
learned, it is necessary to predict the effects of an action, well
before the reinforcement value is delivered.

Reinforcement learning has generally been used as a tabu-
lar method, where each state has a corresponding entry in a ta-
ble and the predicted value is learned for each state. There has
been some work in combining reinforcement learning with
function approximators such as neural networks (most no-
tably is Tesauro’s champion-level backgammon player (Tesauro
1994; Sutton and Barto 1998). The approximator learns a
nonlinear function of each state. Th eoutput of the approxi-
mator is the value of the state. This enables faster learning for
similar states, and generalization for new states. A reinforce-
ment learning algorithm chooses the state with the maximal
value. This paper decribes experiments in predicting the rein-
forcement value of pitch sequences. The nonlinear approxi-
mator is a recurrent neural network combined with a temporal
difference (TD) prediction algorithm.

Nonlinear neural networks consist of two or more layers
of small processing units that are connected to the next layer
by weighted connections.
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The output of each layer is fed forward through these con-
nections to the next layer, until the output layer is reached.
Each processing unit sums the weighted inputs it receives
and passes the sum through a nonlinear function, usually the
sigmoid or hyperbolic tangent. In an iterative training pro-
cedure, example inputs and the target outputs are presented
to the network repeatedly. The network can learn a nonlin-
ear function of the inputs by adjusting the weights (on the
weighted connections) on each iteration. Such networks are
useful for pattern matching and classification, and have been
explored within the computer music community to classify
chords(Laden and Keefe 1991), to detect musical styles (Dan-
nenberg, Thom, and Watson 1997), and other tasks (Todd and
Loy 1991; Griffith and Todd 1999).

A recurrent neural network includes the past output of
some of its processing units as part of its state, in a feedback
configuration. This enables it to learn sequences. Todd (1991)
used a Jordan recurrent network (Jordan 1986) where the out-
put of the network is fed back to the input layer. The actual
input is a decaying average of the most recent output values,
providing a decaying memory of the melody being played by
the network. This system can learn melodies with 20 or more
notes with durations that are multiples of sixteenth notes, and
can use the network to generate new tunes.

Mozer (1994) developed a system called CONCERT. CON-
CERT uses the back-propagation through time (BPTT) algo-
rithm (Williams and Zipser 1988; Rumelhart, Hinton, and
Williams 1986; Campolucci 1998) and is a fully connected
network; each processing unit receives, in addition to the set
of external inputs, z;(n), the output of all other processing
units, including itself, at the last step n — 1. CONCERT uses
a novel representation of pitch, duration, and chord for input
and output that has a phychological, musical basis. Mozer’s
careful analysis of the behavior of the network for each pre-
sented task includes comparisons showing the network is more
general and concise than second and third-order probabilistic
transition table approaches. CONCERT can learn and com-
pose waltzes including the harmonic chord sequences and
multiple phrases.

Our past work uses Todd’s design as a basis for a two-
phase learning system called CHIME (Franklin 2000; Franklin
2001) that, in phase 1, learns three 12-bar jazz melodies.
Pitches are represented in the same type of localized represen-



tation as Todd used (1 bit dedicated to each possible pitch).
An additional set of 12 inputs represents the current chord of
the song. The 12 bits correspond to 12 chromatic pitches, 4 of
which are 1 and 8 of which are 0. The 4 “on” pitches are the
chord tones. In the second phase the output units are further
trained to improvise jazz. A reinforcement value indicates,
numerically, how good or bad the output is, as determined by
a set of rules for local-in-time improvisation. This network
learned to increase the reinforcement value over time, and an
analysis of its improvisation shows that it not only generally
heeds the improvisation rules but also employs parts of the
original melodies learned in the first phase.

Our earlier work provided the basis and motivation for
our current in-depth study of recurrent networks and their use
with reinforcement learning for music. In the next section
we describe the recurrent networks that we are using and the
modifications that enable it to learn according to the temporal
difference algorithm. Following that we describe its perfor-
mance on two prediction problems. We follow this with a
discussion of the next step, that of employing reinforcement
learning for pitch generation.

2 Long Short-Term Memory (LSTM)
with Temporal Difference
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Figure 1: An LSTM network with recurrent memory blocks
between the input layer and the output layer.

A Long Short-Term Memory or LSTM network (Hochre-
iter and Schmidhuber 1997, Gers et al. 2000) is a recurrent
network that employs an internal layer of recurrent memory
blocks that can be thought of as complex processing units
as shown in Figure 1. Rather than being one typical unit that
sums its weighted inputs and passes them through a nonlinear
sigmoid function, each memory block contains several units
used in different ways.

Eck and Schmidhuber (2002) use LSTM networks to learn
and compose blues music. They successfully trained an LSTM
network to learn a standard 12-bar sequence of blues chords.
Similarly to Todd, they split time into eighth note increments,
with one network iteration per eighth note time slice. The
network must be able to output a chord value for as many
as 8 time increments (for a whole note chord) and then out-
put the next chord in the sequence. Each chord has a dura-
tion of either 8 or 4 time steps (whole note or half note dura-
tions). Chords are represented as sets of 3 or 4 (triads or triads
plus the seventh) simultaneous note values. They use a sec-
ond LSTM network to learn concatenations of 1-bar melodies
over these learned chords.

Figure 2 shows a detailed view of memory block j with n
self-recurrent linear memory cells. Each block also contains
three gating units that are typical sigmoid units, but are used
in the unusual way of controlling access to the memory cells.
The output gate y°“% learns to control when the cells’ out-
puts are passed on, the input gate y® learns to control when
inputs are allowed to pass in to the cells, and the forget gate
y®i learns when to reset the memory cells. LSTM’s designers
were driven to design a network that could overcome the van-
ishing gradient problem (Hochreiter et al. 2001). Over time,
as gradient information is passed backward to update weights
whose values affect later outputs, the error/gradient informa-
tion is continually decreased by weight update values that are
typically less than one. Because of this, the gradient vanishes.
Yet the presence of an input value way back in time may be
the best predictor of a value far forward in time. LSTM’s
design overcomes these limitations.
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Figure 2: An LSTM memory block showing n memory cells
and 3 gates. The memory block outputs (at top) are fed into
the output layer and are also fed back recurrently to all of the
memory blocks.

Referring again to Figure 2 and using the notation of Gers
etal. (2000), c7 refers to the vt" cell of memory block j. The
inputs to the blocks are multiplied by weights that belong to



the v*" cell, and then are summed, to form the net e (t) that
are then passed through sigmoid function g, as shown at the
bottom of Figure 2. The v memory cell’s output is

ser () = Y% (D)ses (t = 1) +y™ (g(neterr) (1)

where sc»(0) = 0. By its role as multiplier, the input gate
y™™i (t) is gating the entrance of new inputs, g(net(;;(t)) into
the cell. With a sigmoid output, its value can swing between
0 and 1, allowing no access or complete access. Furthermore,
the block’s forget gate’s output y %3 (¢) is gating the cell’s own
access to itself, learning to reset the cell when information it
is storing is no longer needed.

The cell’s output s (¢) is passed through a sigmoid func-
tion, h, with range [—1,i], and then it may be passed on as an
output of the memory block according to

Y (1) =y (8)h(ses (1)) )

where we see that the output gate may allow h(s.v(t)) to
pass out of the memory block, or it may inhibit it, By mul-
tiplying by 0. y°u%i(t) is a sigmoid function of a weighted
sum of inputs net,y; (). lLe. y°hi(t) = f(netouw,(t)).
The inputs are received via recurrent links from the mem-
ory blocks and from the external inputs to the network. Note,
y%i () = f(nety, (1)) and y™ (1) = f(netin, (1)).

The weight updates for the LSTM network are complex
because of the use of the memory cells and the three gates
within each block. Each output unit has a set of weights
used to multiply the values coming from the memory blocks.
Each gate has a set of weights that it uses to multiply its
inputs. Each cell has its own set of weights Werm used to
calculate net.y (t). In the usual neural network scenario, the
network learns to minimize a function E(t) that is the sum
of the squared output unit errors. Each output unit error is
ek(t) = T*(t) — y*(t) where T*(t) is the target of output
unit k at time t and y*(¢) is the actual output. i.e. E(t) =
> ((T*(t) — y*(t))?). Then any weight wy,, is changed at
each iteration by

L OE(t)
Owym (t)

moving the weight in the direction of a minimal value in the
error surface. If there is just one output unit with output y,

dy

6wlm

Awp, (t) = (3)

Awyy, () = ae(t) 4)

In temporal difference (TD) learning the one output at
each time step is a prediction V' (¢). The reinforcement value
it is predicting may not be known until the end of the whole
sequence of pitches. TD approximates the error e(t) by first
getting the next state s(¢ + 1) and using a temporal difference

e(t) = (R+V(s(t+1)) = V(s(t)). ()

In our case R is very sparse, having the value 0 until the end
of the pitch sequence, when it is finally either O or 1, indicat-
ing “bad” or “good”. ~ is a discount factor, 0 < v < 1.

TD also uses an eligibility trace that “correlates” a weight’s
recent values with its effect on the output V, determining
how “eligible” it is for weight updating. We follow Bakker’s

derivation of adding eligibility traces to an LSTM network (Bakker

2002). Bakker uses LSTM with advantage learning, a type of
reinforcement learning. Advantage learning incorporates the
TD eligibility traces in exactly the same way as TD.

Consider wy,,, (t) is the weight that connects input m to
unit [, whatever that may be (cell, gate, output unit, etc.).
Each change to weight wy,,, is

E(t)
av (s(1)t

Awy, = eligim(t) (6)

where 88%3(8)) isthe TD “error” e(t) as given in equation (5),
and elig;.,, (t) is the eligibility trace that indicates how eligible
weight wy,,, is to be updated. Its eligibility depends on how
much it affects the output V'(s(t)) and its recent cumulative
effects on V' (s(t)), with accumulation length determined by
A< A

OV (s(t))

eligm(t) = yAeligim(t = 1) + =5 == (7)

So, for every weight wy,, in the network, 275 must be
calculated. "

The network’s output is V' (s((t)) = f(neto(t)), where
neto(t) is the weighted sum and £ is the sigmoid function.
The weights connecting memory block outputs to the network
output, wo,, are updated using equation (6):

Awon (t) = a e(t)eligom(t) ®)
where
eligom(t) = yAeligom(t — 1) + %Z(t)) )

and ZXCW) = ' (5(8))hy, (£)y©"% (¢). Each hy, () is equal

to h(scy(t)) for some block j and some cell v in that block
and y°uti (t) is the output gate’s output for the same block ;j
(refer again to Figure 2).

Ineach jt" block. the output of the output gate, y °*ti (¢) =
fout; (netou; (t)), multiplies every h(s.»(t)). For the output
gate itself, !

_ OE()
Au’outjm — a@V(t) eoutjm(t) (10)
where
oV (t
eoutjm(t) = ’Y>\eout7-m (t - 1) + A (11)

6woutj m



For our network configuration
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where x,,(t) is the m'" input to the output gate, and Woer
connects the cell output A(s.v (%)) to the TD output unit that
predicts V. In other words the network output errors are prop-
agated back to the j** output gate, from the network output
unit through the weights Woey connecting all the cell outputs
of block j to the output unit.

The errors for the input gate, forget gate, and cell in-
put weights must all be propagated back through the weights
wocy as well, but also further back, through the memory cell.
For this we calculate first three recurrent gradients:

Dsey(t)  Dseylt—1) , .
Berm ~  Bugm U ) FI ety (Dm (D),
(12)
Dsey(t) _ Dsey(t—1) 0
aw¢jm B 6IU¢,jm y (t)+88}) (t_ )f¢j(net¢j (t))xm(t).
(13)
and
Oscv (t) 0Sev (t — 1)
J — M 0;
i m Dwmm (t)

+ g(netc; (t))len] (netin, (t))zm (1)
Notice they all have the form

885}) (t)

8wlm

885}) (t — 1)

o Y% (t) + 0y (t) ().

(14)

The only recursive gradient equations are those involving the
gradients of the cell outputs Scv. The crucial element that
leads to this network’s succcess is the ability of the memory
cell to “cache” error/gradient information for later use, as can
be seen in equations (1), (12), (13), and (14).

In order to update the weights on the inputs to the cells,
Wevm, and the weights into the forget gate, w;.,, as well
as the weights on the inputs to the input gate, w,,m, these
gradients are used, along with the eligibility traces from the
temporal difference method. Given n as the number of cells
in block j:

ch;u_m = ae(t)eligc;m(t) (15)
for
eligcym(t) = 'y)\eligc;gm(t -1
, , S (t)
+ wocrV (5()Yout; (1) (Sc; (t) 6w1v

and for the input gate,
Awin;m = ae(t)eligin,m(t) (16)
for

8S.x ()

+ Z'U)Oc; V,(s(t))youtj h’ (Scy (t)) :

awinj m

Finally, for the forget gates, the update equations are very
similar to the input gate equations:

Awg;m = ae(t)eligs;m(t) 7
for
eligy,m(t) = ~yAeligy,m(t—1)
n , ) 9Scx (t)
+ Zch;V (S(t))youtjh (SC ( )) aw¢]m °

The reader is referred to Gers, Schmidhuber, and Cum-
mins (2000) and Bakker (2002), for even more explicit detail,
and to Sutton and Barto (1998) for their treatise on TD and
value function learning.

3 Experiments

In the past, we have run experiments on jazz-oriented mu-
sical tasks. After trying several kinds of recurrent networks
for this purpose, we found that LSTM networks provide the
best results. We derived a new pitch representation called
Circles of Thirds that works well for these tasks (Franklin
2004b). Pitches are represented as 7 bits, determined by their
membership in the 4 circles of major thirds and the 3 circles
of minor thirds. We also used LSTM networks to learn long
songs, using the Circles of Thirds pitch representation and
a new duration representation that enables learning of MIDI-
based durations, recorded from human playing, rather than re-
quiring exact score-based durations that do not vary (Franklin
2004a).

3.1 Predicting Successfor Chromatic L ead-in

As Berg (1990) points out, one effective technique of im-
provisation is to use chord tones in creating a melody, and
to lead-in to a chord tone with chromatic pitches just below
or just above the chord tone. In our first prediction experi-
ment, the network is given a set of 7 pairs of sequences, one
sequence at a time. Each sequence contains five pitches. In
the first of each sequence pair, the third note is a chromatic tie
between the second note and the fourth note (except sequence
pair 3 where it appears one step earlier). Both the fourth and




fifth notes are chord tones. The positive sequences, from Berg
all occur over the Cma7 chord (with the 6th and 9th included
as chord tones). There is no chord input however. The 7 pairs
of sequences, each sequence labeled with its correct final tar-
get (1 or 0), are below, with “-” indicating a flat note:

g,a,a-,0,9 1 g,a,a,0,9 0
0.,a,a#,b,b 1 0.,a,a,b,b 0
d,d-,c,b,b 1 d,c,c,b,b 0
b,d,d#,e,e 1 b,dd,e,e 0
e f# fee 1 ef#fttee O
eeettfaft 1 eeeftft O
a,b,b-a,a 1 a,b,b,a,a 0

In an earlier paper we showed that sequences like these
can be classified correctly using LSTM (Franklin 2004b). In
classification, the network output is O at each time step, ex-
cept the last, when the output is 1 if there is a chromatic lead-
in, and 0 otherwise.

The next question is: Can the target value be predicted
at the time when the significant chromatic note occurs? We
employed the combination of temporal difference and LSTM
recurrent network algorithm as described above, and used
our Circles of Thirds pitch representation. In the best of
the experiments, the LSTM network contains 15 blocks with
2 memory cells each. Learning occurs over 20000 epochs,
with an epoch being one presentation of all of the sequences.
A = 0.65 and v = .95. The learning rate for the output unit
is « = .5 and it is lower for the rest of the units, a = .2.
The network is as depicted in Figure 1 except that there is
also a direct connection from the inputs, the state s(¢) that
is the current pitch, to the single TD output unit that outputs
the prediction V'(s(t)) of the target. The LSTM bias factor,
that determines how long before each block is used for learn-
ing (Gers, Schmidhuber, and Cummins 2000) is -.1.

Here are the predictions for each sequence:

1) g,3a,00 .02,.08,.01,0,.99
0,2,2,0,0 .02,.08,.01,0,0
2) g.aa#bb  .02,.08,.01,95,1.0
g.,a,a,b,b .02,.08,.01,0,0
3) dd-cbb 0,.61,.86,.1.0,1.0
d,c,c,b,b 0,0,0,0,0

4) bd,d#ee 0,0,0,88,99
b,dd.e,e 0,0,0,0,0

5) efi#fee .05,.1,0,.11,.91
ef# ftee  .05.1,0,00

6) eee#f#f#t .05,03,.05,95,1
eeef#f#  .05,.03,.02,.03,0

7) abb-aa .01,0,0,1,1
a,b,b,aa .01,0,0,0,0

In sequences 2, 4, 6, and 7, the prediction was clear at the
fourth and fifth steps. All sequences were correctly predicted
by the fifth step. When two pairs of sequences are similar
(sequence pairs 1 and 2, and 5 and 6), positive prediction is
delayed. In sequence pair 3 the chromatic change occurs one
step earlier than in the others and the prediction reflects that;
in the third step, the prediction was .86, then 1, then 1 on the
fourth and fifth steps, after the d- to c.

3.2 ii-V7-l

In the second set of experiments we refer to the target as
the reinforcement value, anticipating future experiments in
using the prediction for reinforcement learning of pitch se-
quences. In these experiments, the network is presented with
example riffs that are longer, carried out over a three-bar ii-
V7-1 sequence. The riffs are 12 pitches in total, all of the
same duration. The examples come in pairs. The first one is a
positive example, with the final reinforcement value, R, being
1 (and all 11 reinforcement values prior to that are 0). It is a
positive example because the fourth, eighth, and twelfth notes
in the pitch sequence are the tonic note of the final chord. All
the other notes in the sequence are chosen from a scale that
can be played over the current chord. The second sequence
of the pair is the same sequence except the fourth, eighth, and
twelfth notes are any of the scale notes except the tonic or
fifth of the last chord.

Inputs are the current pitch, plus the current chord of the
possible three, from a ii-V7-1 sequence, held for four pitches
each. The network also has two inputs that are beat inputs.
One input is 1 at the first beat of each of the three bars. The
second input is 1 on each of the two off-beats of the three
bars.

For all examples, the number of epochs is 10000. 20
blocks with 2 cells in each block are used in the LSTM net-
work. There is one output unit, a TD unit. The TD learning
rate « is reduced to .1 in the ii-V7-1 experiments and for all
other units, a is .5. Again, the TD discounting factor v = .95
and the bias factor for LSTM is -.1.

We retain the direct connection from inputs to output unit
(experiments were not successful otherwise). In the original
LSTM, there was no forget gate. It was introduced later by
Gers, Schmidhuber, and Cummins (2000) for use when there
is no clear demarcation of sequences. Wondering if it might
interfere with the TD mechanism, we eliminated it by setting
y% (t) = 1 for all t. Suprisingly, the forget gate seems nec-
essary for TD to work with LSTM. Without the forget gate, 0
was predicted for nearly all sequence steps.

We found that the value of A made quite a difference in
prediction values, with even a .05 change in its value produc-
ing significant results. We present two tables of results, for
the values of A = .75, and .8. We refer to these tables in the
discussion following them.



For A =.75
# R Tonic Chord Pitches
1 1 ¢ A-7 a,f# 0,0 0 .8 0 0
D7 c,acg .09 0 .05 61
G g,e fi g .81 1 95 .98
0 a A-7 a, f#g,c 0 .82 0 0
D7 c a,c f# 1 0 .04 .65
G g, e, T, 0 0 0 0
2 1 d# F- o#, f, oft, d# 0 0 0 .01
Bb7 f,c, g, d# .01 5 0 41
Eb d, d#, a#, d# 94 .02 .96 1
0 d# F- o#, f, oft, o 0 0 0 .01
Bb7 f,c,0,0# 0 0 0 0

Eb d, d#, a#, d .04 0 0 .07

3 1 b Ct- f#, att, e, b .03 28 22 .23
F#7 a#, a#, a#, b .84 .07 .76 1

B e, b, eb 84 54 87 .8

0 b Ct- f#, a#t, e, gt .03 34 .29 0
F#7 a#, a#, a#, c#t .05 0 0 0

B e b, e cH .87 0 0 0

4 1 ¢ D ceg,c 0 .01 0 0
G7 b,a dc .02 0 .02 .05

C f,b,d,c 01 3 .93 1

0 c D ceqf 0 .01 0 0
G7 b,ada 01 0 0 0

C f,b,d, e 0 .01 .05 .01

5 1 a# C- d,c,d,a# 0 0 0 0
F7 g, 0#, a#, a#t 0 0 0 .19

Bb c, d#, c, a# 19 .18 22 .99

0 a# C- d,c,d,c 0 0 0 0
F7 g, d#, a#, d 0 0 .03 0

Bb c, d#, c, d# 18 .16 .23 .18

6 1 og# Bb- f, c#, oft, gt 0 0 0 .05
Eb7 g#, c#, ctt,g#t .01 0 0 0

Ab c#, f, ct, g# .01 .01 .85 1

0 o# Bb- f, c#, o#, a# 0 0 0 .01
Eb7 g#, c#, ctt, et .01 0 0 0

Ab cH, f, ct, att 0 0 0 0

Sequence pairs are numbered in the first column. The final
target reinforcement value R for each sequence appears in the
second column. The tonic of the third chord is shown in the
third column. The current chord of the progression is in the
fourth column, and the four pitches played over it are in the
fifth column. The fourth pitch will always be the tonic of the
third column, when R=1.

When A = .75 (table above) sequence pairs 2, and 3 show
the desired behavior of predicting low reinforcement from
time steps 4 onward for the sequences without the tonics (al-
though there is an anomaly of .87 in the R=0 sequence of
pair number 3). The other pairs show good prediction several
steps from the end of the sequence, to varying degrees. When
A = .85 (table not shown), all predictions are high except the
very last which is always correct. So it produces a classifier,
rather than a predictor. A table for A = .8 is shown next:

ForA =8
# R Tonic Chord Pitches
1 1 g A-7 c,d f#g 99 84 86 .04
D7 g,d,d,g 0 .25 .81 .99
G e e b, 1 1 85 .97
0 g A-7 c,d f#a 99 84 86 .07
D7 g,d,d, b 0 .02 .97 9
G e eb,c .88 .99 .92 1

2 1 d# F- g, c, a#, d# .99 1 8 .22
Bb7 d, g#, d, d# 95 91 98 .92
Eb o#, g, c, d# 97 97 92 99

0 d# F- g, ¢, at, g .99 1 81 .09
Bb7 d, g#, d, g# .95 9 97 .99

Eb g#,0,¢,¢ 1 9 .93 .06

3 1 b C#- C#, c#, cH, b 96 95 54 24

F#7 a#, t#, t#, b 94 95 92 .89
B T#, a#, a#, b 1 1 96 .98

0 b C#- CH#,c#,ct,d#t .96 .95 5 .02
F#7 aft, t#, ft, e 95 95 .93 1

B f#, af, att,c# .94 93 91 0

4 1 ¢ D b,af,c 1 9 1 1
G7 b,c,ec 98 99 .93 9

C b,d, g, c 97 78 96 .98

0 ¢ D b,a f,b 1 9 1 .92
G7 b,c e a .98 1 .92 47

C b,dg,f 98 29 .07 .03

5 1 a# c- a#, d#,ca# .93 91 .96 .01
F7 g d#aa# .93 .68 .95 .89

Bb a#, g d#,a¥ 1 .99 .93 .96

0 at c- a#, d# c,d¥ .93 91 .96 .03
F7 g d#ad¢ 97 97 1 .89

Bb a#, g d#,d¢ 1 99 87 .02

6 1 g Bb-  f a# f, gt 1 9 9 91

Eb7 C, C#, C#, g# 1 73 .76 .16
Ab a#,c, g, g# A8 64 19 .89
0 o# Bb- f,a#, f, c 1 91 99 .99
Eb7 C, C#, C#, a# 1 8 71 .01
Ab a#,c,g,c 22 54 17 01

For A = .8 most notes in both sequences are judged “good”
and nicely, the fourth, eighth, and twelfth notes receive differ-
ent kinds of predictions than the rest. The twelfth (last) note
is always correct, but the network does not always make the
right prediction on the fourth and eighth notes.

3.3 Discussion

In its most successful behavior this combined TD-LSTM
network seems to pick out the notes that produce the final
value of R. And at the end of the sequence, as we saw in
the chromatic lead-in experiments, the last several values cor-
rectly predict the final reinforcement. One overall impression
we have of the LSTM network is that it is very adept at learn-
ing particular sequences, but may find it hard to ignore val-
ues in a sequence. Comparing the two tables with only a .05
difference in A (.75 vs. .8), the prediction values are much
higher, earlier on in the sequences for the higher value of A,



whether the value of R is 0 or 1. In the second table, in many
cases the prediction on the fourth or eighth step is 0 or 1, a
sign that the network has traced back to that step as important
in determining reward. But it is not always consistent. Also,
there is obvious interference with a chord tonic appearing in
other sequences and affecting the predictions there. Before
we move on to the next step, we will try using three smaller
LSTM networks for this task, one each for the three chords in
the progression. It seems obvious that these networks could
easily learn to classify the pitches over an individual chord.
A fourth network could learn to use these classifications to
predict the final reward.

4 Next Step

After refining the prediction behavior of the LSTM-TD
network(s), the next question to ask is: Can a reinforcement
learning algorithm learn to use this prediction to choose valid
pitches? First note that Bakker (2002) combined a form of re-
inforcement learning called advantage learning with an LSTM
network. The LSTMRL network learned to solve 2 clas-
sic non-Markov tasks (ball balancing and T-maze following).
One network was used, with one output per possible action.
The network is given the state as input, and its output is the
value of the corresponding action, in the given state. The ac-
tion is chosen by finding the output with the highest value.

There are two problems with this configuration for musi-
cal tasks. First, we have shown that for three tasks, the LSTM
network learns faster, and better, with a state (pitch or dura-
tion) representation that has more than one value “on” at a
time. For example, C is represented in the Circles of Thirds
representation as 1000100. And in our duration representa-
tion, not only are there many more allowable actions, but the
representation does not even have a fixed number of “on” bits.

To solve these problems we hark back to early ideas and
architectures that have not remained popular currently. In
particular, we will use the RL architecture of Jordan and Ja-
cobs (1986). In this and other architectures, the value and
action function are learned separately. The large number of
epochs required to learn prediction make make it inffeasible
to use these networks in interactive learning in real-time with
humans. However, the networks could be trained first and
then courld learn further through a second phase that does
involve interaction (Franklin 2001).
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