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Abstract. We describe an audio granular synthesis generator with con-
trollers that can be accessed by reinforcement learning agents. The move-
ment of the controllers affects the sound, which is analyzed to produce
a vallue called the reinforcement. The analysis is based on spectral goals
and the reinforcement value is used to adjust the agents. Experiments are
described using spectral features that are the spread and centroid, as well
as the Mel-Frequency Cepstral Coefficients of the sound. We extend this
work to include the complex task of generating a soundwave to match
an instrumental recording. We have generated soundwaves that match
criteria for reinforcement and gained insight in using MFCCs.

Keywords: Granular Synthesis, Reinforcement Learning, MFCCs

1 Introduction

We research combining machine learning algorithms with granular synthesis,
the building of sound objects using brief microacoustic events called grains of
sound. A grain of sound may be a pure sine wave passed through an amplitude
(volume) envelope, lasting barely as long as the threshold of human auditory
perception [16]. Sound may be synthesized and shaped from grains by varying the
density of grains per second, the frequency range of the sine waves, the waveform
oscillated to generate each grain, and the durations of individual grains, etc.
Parameters may be time-varying and can be means in a gaussian distribution or
some other kind of random distribution.

We have implemented a granular synthesis engine, spectral analyzers, feature
extractors, and reinforcement learning (RL) agents that change parameters in
the granular synthesis engine. These elements aredescribed in this paper, along
with experiments in controlling spectral features of streams of grains. The overall
system diagram is shown in Figure 1. As a result of the changes in the granular
synthesis (grain) controllers, the spectral features of the grains change. The
features are used to determine the state of the learning system (which agent
should be active next), and the reinforcement value.

We describe three sets of increasingly complex experiments and distinguish
them by spectral goals. First, the RL agents must produce a grain stream with

? submitted to MCM2013



2 Generating Soundwaves via Granular Synthesis and Reinforcement Learning

Fig. 1. The overall system showing how the synthesis engine, feature extractors, learn-
ing agents, and interface work at the top level.

a constant spread and centroid. Second, the RL agents must generate a grain
stream that has a constant set of Mel Frequency Cepstral Coefficients (MFCCs).
Third, the RL agents must produce a grain stream that produces a sequence of
75 sets of MFCCs.

2 The Granular Synthesizer

Working within a graphical music programming environment called Pure Data
(PD) [15], we created a granular synthesizer program (patch), called GranWave,
that uses wavetable oscillators to generate sound grains. As shown in the inter-
face in Figure 2, to start grain generation, the user clicks grain.trigger, which
generates a “generation rhythm” with a period of “speed” ms, and some ran-
domness set by the percentage of desired deviation (%deviation). A decrease in
the grain stream speed is a decrease in the amount of time between grains, as
measured in milliseconds. So it is actually an increase in the number of generated
grains.

grain.trigger triggers the patches (subprograms) that set the other grain pa-
rameters, through sent messages: mkDur, mkFreq, mkWave, and mkPan. mkDur
triggers the actual grain duration, with some random variation. The default val-
ues of the range shown in Figure 2 are 5 msec minimum and 15 msec maximum
duration. The chosen grain wavetable defaults to 1, the pure sinusoid. The mk-
Wave and mkPan messages trigger the choice of wavetable (1,2, or 3 depending
on desired harmonics), and stereo panning. Panning is set by default to have a
spread of 45, with random variation enabled.

In the initial implementation (Figure 2), mkFreq triggers randomrange. Ran-
domrange receives as input the values of the two horizontal sliders as the bounds
on the range of frequencies within which grains will be generated. The top slider
sets the minimum range value, and the bottom slider sets the maximum range
value. These two sliders are the grain controllers shown in Figure 1. Referring
again to Figure 2, the grains are produced in the nqpoly4 pd patch, bottom
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Fig. 2. The PD file that holds the granular synthesis engine and the mechanisms that
send audio signals to the analyzer, and the slider controllers that are controlled by
reinforcement learning.

Fig. 3. A small portion (.6 sec) of a wave generated by the granular synthesis engine.

center. This patch, via 64 instantiations of the singrain˜ patch, which calls the
wavetable oscillator, throws the stereo OUTL˜ and OUTR˜ signals of the grain
stream and these are sent to a digital to analog converter.

Figure 3 shows a short portion of sound generated by the granular synthesis
engine. The grains in the figure vary in density (number of grains per second),
duration (some are wider than others), and amplitudes.

3 Spectral Centroids and Spreads

In our early, first set of experiments, one of our evaluation criteria was a function
of spectral centroids and spreads (bandwidths) of windows of grain streams. The
Fast Fourier Transform (FFT) is taken of each window. The spectral centroid is
an amplitude weighted average of the 256 frequency bins, that corresponds to
the preceptual brightness of the sound [2].
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The number of states is set to 200, corresponding to 100 divisions per slider,
and setting the min and max of the frequency range as discussed in Section 2.
The reinforcement learning algorithm that we used would work best if we created
a 100x100 square state space since the position of one slider affects how the other
slider alters the sound output. When we originally began this work, the 10,000-
state size taxed existing computing systems, in real-time output. We decided
to use a state space that was just the two slider spaces juxtaposed, whence
the 200 states, 100 per horizontal slider. Each agent had the same finite set of
actions 0,1,2,3,4, 5, 6 and 7, with actions 0 through 6 corresponding to sliding
the controller -10,-5, -1, 0, +1, +5 and +10 spaces.

Action 7 changed a high level 2-valued state that switched which slider af-
fected the grains’ frequency value. The RL controller did not receive the high-
level slider state as input. This configuration introduced perceptual aliasing [6]
and made the task more difficult as the reward from action selection was not
consistent. The effect of a single slider’s action depended on the position of the
other slider as well, and this was not available to the agent that was changing
the slider position.

Each of the 200 states corresponded to a 86.133Hz wide subband of the
frequency spectrum. Consequently if an agent action was +1, then it moved the
horizontal slider (and so its own state) up to the next frequency bin (adding on
86.133Hz). If the action was -5, the horizontal slider moved -430.665Hz.

The Sarsa [17] reinforcement learning algorithm was implemented in a patch
called GRControl . Its pseudocode is in the Appendix. Using this configuration,
GRControl successfully learned to generate a grain stream that had both a fixed
spread and centrum. For more detail see [14].

4 Generating a Standing Wave with MFCCs

In a previous publication, we note that the spread and centroid measurements
are functions of the linear FFT bins, and do not correspond well to what we
hear as the subjective pitch spread. At the time, we planned to pursue using a
“constant Q” transform [5] that makes sense with respect to pitch rather than
frequency.

Since then, we discovered that the mel-frequency scale provides frequency val-
ues for pitch as perceived by the human auditory system for speech has yielded
good results for music as well [9], and is more efficient to compute than the Q-
transform. The first experiments using MFCCs are in using reinforcement learn-
ing to match one set of goal MFCCs by changing the max and min frequency
values in the granular synthesis generator. The goal MFCCs correspond to one
window sample’s worth of a single (standing) waveform with several harmonics
as shown in Figure 4. We wrote the reinforcement learning (RL) algorithm in
C, modifying code from earlier work [13, 14], using the C interface code pro-
vided for PD, and described by Zmölnig [19] and the MFCC code described by
Sakari Tervo and Jukka Pätynen [18] The RL algorithm is the same Sarsa(λ)
reinforcement learning algorithm. The number for MFCCs is 51 per analysis
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window. With increased computing power, we were able to experiment with a

Fig. 4. Goal MFCCs, shown graphi-
cally, for the standing wave experi-
ment.

Fig. 5. Actual MFCCs, shown graphi-
cally, after reward criteria were met, to
match goal MFCCs in Figure 4.

100 by 100 statespace, giving every dual slider position a unique state and a
unique corresponding reinforcement learning agent.

4.1 A New Reinforcement Criterion

For each window of sound samples, let n = number of mel-frequency cepstrum
coefficients.
Let A be the set of actual coefficients at each time step, and G be the set of goal
coefficients.
Let xi = sign(Gi −Ai) for i = 0, 1, · · · , n− 1.
Let yi = |Gi −Ai|
and finally, to see qualitative behavior, let

X = Σn−1
0 xi (1)

and
Y = Σn−1

0 yi (2)

Then we compute R as:

R =

{
1, if Y <= Ythresh and X <= Xthresh

0, otherwise.
(3)

For Ythresh = 20 and Xthresh = 10 we show in Figure 5 a graph of a snapshot
of the 51 actual MFCCs. They are shown as a graph, of the 51 distinct values;
i.e. this is not a sound wave. Figure 4 shows the graph of the goal MFCCs, which
are static for the standing wave goal.

4.2 Discussion

We have determined that the RL agents can learn to control real-time granular
sound generation. Controlling a fixed centroid and spread was a straightforward
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reinforcement learning task, even with perceptual aliasing. Making the reinforce-
ment criterion a function of the MFCCs of a fixed soundwave made it a more
difficult machine learning problem. The conversion of the aliased statespace to
a non-ambiguaous one enabled the achievement of matching MFCCs of a goal
and generating standing wave of sound grains, although not perfectly. The next
milestone is in learning to produce sequences of MFCCs through generation
of soundscapes. We report on experiments in this direction next, that include
further interpretation of the MFCCs.

5 Dynamically changing MFCCs

We report on experiments in using RL to produce a complex wave-form, by
matching MFCCs. We chose a waveform of 1.5 seconds from a Stanley Clarke
et al. [7] song (Thunder - see Figure 6). This section presents the process of
understanding how to structure the system: the process of varying parameters
in the granular synthesizer, the design of the three-dimensional state-space of
the Reinforcement Learning controller, and the choice of wavetable that was
oscillated by each grain.

5.1 The More Complex Controller

The structure of the new GRControl patch containing the RL agents was a
three-dimensional state-space of Sarsa(lambda) reinforcement learning agents,
with 17 actions each. The state-space consisted of the current time-step’s fre-
quency in one dimension, and the previous time-step’s frequency in the second
dimension, and both current grain amplitude and current grain duration in the
third dimension. The actions make changes to frequency, grain duration, and
grain amplitude volume. We note that the use one dimension of the state space
to share two variables is not ideal. However, our PD indexing scheme prevented
a straightforward four-dimensional implementation.

Fig. 6. Sound Excerpt from Stanley Clarke et al.’s [7] Thunder.

5.2 Using MFCCs in the Reinforcement Function

We chose the goal waveform because it is complex, and enjoyable to hear. Our
goal in these experiments was to design an RL-based controller, reinforcement
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function (of the MFCCs), and control interfaces that generated a 1.5 second
waveform that is similar to the waveform shown in Figure 6. The similarity
is determined by some function of the difference between the set of MFCCs
that represent this waveform, called the goal MFCCs, and the MFCCs that are
generated during each 1.5 second episode of waveform generation via granular
synthesis. 1.5 seconds is 75 windows of 1024 samples each, at a sampling rate of
44.1k samples per second. Each set of MFCCs is the output of analysis of one
of these windows.

The reinforcement criterion was modified to contain the structure of an
episode. One episode is one 1.5 seconds worth of sound generation, equivalent
to one “pass” through the goal wave. Reinforcement Learning, with its delayed
reward capability can be used in a setting where the reinforcement value is given
at the end of an episode. Each agent’s eligibility trace, a time-decaying measure
of its activity, enables it to receive part of the reward if it is due.

The modified reinforcement function was defined as:

R =


0, if not at end of episode

1, if ΣŶk <= Ythresh and ΣX̂k <= Xthresh

−1, otherwise.
(4)

where k = 1, 2, · · · , 75 over the 75 episodes, and similarly to equations (1) and
( 2)

X̂k = Σ
np−1
0 xi (5)

and
Ŷk = Σ

nq−1
0 yi (6)

where np <= 51 and nq <= 51 can be set as parameters to the reinforcement
analysis function. The use of episodes in this way resembles some of the original
pole-balancing research in the early days of reinforcement learning [1].

5.3 First Results

Fig. 7. A generated waveform that matched criteria Ythresh = 10, Xthresh = 2 (up to
2 coefficient signs could be different), and 8 coefficients compared (no normalization).
The speed was 6. One can see the distinct nature of the grains in this waveform, and
its dissimilarity to the goal waveform of Figure 6.

Experiments involved setting RL-action output ranges as well as making
changes in the grain engine when various discoveries were made. Previously our
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duration region was between 1 and 8 or 1 and 16. The actions of the RL controller
could change the duration by ±2, ±1, or 0. We tried passing the output through a
linear function before being sent to the GS engine: duration = durationSlider*3.
In another experiment, the Speed was set to 6 with duration varying between
20 and 28, with resulting waveforms such as the one in Figure 7 that are quite
dissimilar to the goal. This was however one of our early successes in that the
RL agents were able to learn to control the grain stream and match a set of
criteria. The graph of Reinforcement (R) values is shown in Figure 8. The total
number of negative R vs. positive R values is almost equal. Furthermore, as the
number of episodes increases, shown on the vertical axis, the number of R=1
values increases.

Fig. 8. Episodes for R = -1: 321 R = -1, for R = 1: 328. Note the shift from R = -1
on the left, to R=1, on the right, as the episode number increases along the Y axis.

5.4 Using Timbre and Normalized MFCCs

Early in this set of experiments, we used the above criterion, keeping Xthresh

and Ythresh the same, and varying how many of the 51 coefficients to use. Of
the 51 MFCCs coefficients total, the first one is always 0. The second coefficient
contains a measurement of the power (amplitude level) of the window of 1024
samples. We dropped that value since the original signal could have a power level
that the grain generator could not produce easily and it is the relative amplitude
levels that are important. Noting that the first half of a set of MFCCs represent
timbre information, and the second half, pitch, we decided to employ the first
half only. At the 44.1k sampling rate, 1024 samples is 23ms, and matching the
timbre measurements should be sufficient. These decisions are based on various
readings such as Tervo and Pätynen [18], Brent, [3], and Loughran et al. [10].
This leaves 24 coefficients to use.

After more experimentation, it became clear that the threshold Ythresh in
Equation 6 depended on the amplitude of the soundwave rather than the relative
values of the Mel-Frequency Cepstral Coefficients themselves. And the measure
was too coarse to be of use as a reinforcement calculation. We ran some exper-
iments in normalizing using the power coefficient (the first non-zero MFCC) to
normalize. But found the best success in using the coefficient values themselves,
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both goal and actual:

yni =
yi

Σ
nq−1
0 yi

(7)

And the resulting reinforcement function was defined as:

R =


0, if not at end of episode

1, if Ŷ n
k <= Ythresh and X̂k <= Xthresh for at least T episodes

−1, otherwise.
(8)

where k = 1, 2, · · · , 75 over the 75 episodes, and for the sum of normalized
coefficient magnitudes,

Ŷ n
k = Σ

nq−1
0 yni (9)

One of the most successful set of parameters for. the reinforcement criteria
were np = nq = 8, and Ythresh = 2, Xthresh = 2 and T=8. After more experi-
mentation with duration and speed, we determined the best configuration to be
duration = (durationSlider + 10)*3 and speed to be a constant 16.

5.5 Adding Domain Knowledge

Fig. 9. Comparison of a matching wave, with the lower frequency range in place, fixed
speed of 16, and the reinforcement criteria parameters 2,2, and 8.

During this experimentation, the maximum number of coefficients that matched
per episode was recorded. The frequency slider had range 86.133 to 1076.65 Hz
as before. The reinforcement learning controller frequency change output was
in integer increments of ±10,±5,±2,±1, and 0. A single +1 move adds 43.066
to the freq. But it added high frequencies as well according to the harmonics
in the wave that composed each grain. It became obvious that some “domain
knowlege” was necessary to improve the performance of this system (after we
ran experiments with several wavetables). In this case, that meant knowing that
a bass instrument generated the original soundwave. A simple adjustment was
made by halving the range of the frequency slider; the slider now ranges from
43.066 to 538.325. Figure 9 shows a grainstream-generated waveform compared
to the goal.

Finally, a wavetable was constructed that is an approximation of the first
several harmonics of the bass guitar, as determined by running a Fourier Anal-
ysis on a very small window of the goal soundwave. It is important to make a
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Fig. 10. The wavetable with several harmonics that is oscillated in each grain. The
harmonics were determined by taking a Fourier Analysis of a small (.05 second) window
of the goal waveform.

distinction here between using this harmonic structure and using an actual piece
of the sound wave itself. The resulting wavetable with the harmonic weights is
shown in Figure 10.

Fig. 11. Comparison of a matching wave; speed 16; parameters 2,2, and 8; lower fre-
quency range; and using Bass harmonics Wavetable, shown with Thunder soundwave.

Figure 11 shows a grain engine-generated soundwave that received a value
of R=1 along with the goal sound wave. At least 8 MFCCs sets must match
per episode for R = 1. During this experiment, the maximum number of sets of
coefficients matched was 22 (out of 75) in one episode. The total number of R
= -1 is 298, and the total R =1 is 372. Figure 12 shows the dramatic shift in
R values from R = -1 to R =1 over the course of the 50,000 iterations or 670
episodes. Recall that an episode is 75 iterations and at its end, either R = -1 or
R = 1 is assigned as reward).

6 Discussion

The system as is stands can reliably match up to one-third of the MFCCs of a
soundwave in a single episode. This is an achievement that can lead to even more
interesting results. It is note-worthy that the fairly simple Sarsa(λ) algorithm
can learn to generate an action path through time. In previous work the author
has used a machine learning algorithm called LSTM [8] that can predict and
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Fig. 12. R values over 670 episodes, frequency range halved, speed of 16. 298 R = -1
values, 372 R = 1 values, and shift toward R = 1 as episode number increases. Bass
harmonics wavetable used, and lower frequency range used in sliders.

reiterate long sequences, for use in music re-generation and new generation [11,
12]. The LSTM algorithm may be combined with the RL agents to produce
a machine that can better produce grain streams that have better matching
sequences of MFCCs.

Two other areas to explore are the Bark scale, with its possible improvement
over the Mel Scale [4], and to match a longer soundwave. Toward this goal, we
plan to continue our experiments in topic models
citeLi06 research applied to spectral analysis to provide parameters to the gran-
ular synthesis engine. Topics could be used to guide what limits on grain sliders
whould be, what parameters should be chosen for MFCCs, or what the con-
trollers change (grain duration, frequencies, etc.).

1 Initialize Q(s, a) arbitrarily and e(s, a)=0, for all s, a
2 Repeat (for each episode):
3 Initialize s, a
4 Repeat (for each step of episode):
5 Take action a, observe r, s′

6 Choose a′ from s′ using Q-policy (ε-greedy)
7 δ ← r + γQ(s′, a′)−Q(s, a)
8 e(s, a)← e(s, a) + 1
9 For all s, a:
10 Q(s, a)← Q(s, a) + αδe(s, a)
11 e(s, a)← γλe(s, a)
12 s← s′; a← a′

13 until s is terminal

Fig. 13. Pseudo-code for Sarsa(λ) algorithm.

7 Using the Sarsa(λ) algorithm

Figure 13 shows the pseudo-code for the tabular Sarsa(λ) algorithm. The algo-
rithm[17] associates with each agent some number of actions. An agent contains
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two sets of numerical values called Q-values and eligibility traces, respectively,
one of each per possible action. Each agent uses its set of Q-values to choose
an action when the system is in its state. The eligibility trace et(s, a) is used to
update the Q-value according to how instrumental the associated action was in
acquiring the most recent reinforcement. We refer the reader to the Sutton and
Barto text [17] for more detail and theory
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18. S. Tervo and J. Pätynen. Tutorial and examples on pure data externals: Real-time

audio signal processing and analysis. http://www.tml.tkk.fi/t̃ervos/, Department
of Media Technology, Aalto University School of Science and Technology, 2010.
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