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Abstract

We describe an audio granular synthesis generator with
controllers that can be accessed by reinforcement learn-
ing agents. The generated sound is analyzed, based on
spectral goals, to produce a value called the reinforce-
ment. The reinforcement value is used to adjust the
agents’ future behavior. Our current focus is in gener-
ating a soundwave that has similarity to an instrumental
music recording. There are aural feature generation and
interactive real-time applications in game sound.

Granular Synthesis Control Overview
We research combining machine learning algorithms with
granular synthesis, the building of sound objects using brief
microacoustic events called grains of sound. A grain of
sound may be a pure sine wave passed through an ampli-
tude (volume) envelope, lasting barely as long as the thresh-
old of human auditory perception (Roads 2001). Sound may
be synthesized and shaped from grains by varying the den-
sity of grains per second, varying the frequency range of the
sine waves, oscillating a non-sine waveform to generate each
grain, and varying the durations of individual grains, etc. Pa-
rameters may be time-varying and can be means in a gaus-
sian distribution or some other kind of random distribution.

We have implemented a granular synthesis engine, spec-
tral analyzers, feature extractors, and reinforcement learning
(RL) agents that change parameters in the granular synthesis
engine. The overall system diagram is shown in Figure 1. As
a result of the changes in the granular synthesis (grain) con-
trollers, the spectral features of the grains change. The fea-
tures are used to determine the state of the learning system
(which agent should be active next), and the reinforcement
value.

Our goal is to generate sound waves that are recogniz-
able from the original sound wave, but clearly generated by
many grains of sound. In our first experiments, RL agents
learned to control a grain stream with a constant spectral
spread and centroid (citation in final paper). The more com-
plex Mel Frequency Cepstral Coefficients (MFCCs) are used
in this paper’s research. First RL agents learn to control a
grain stream that produces a constant set of MFCCs. Then,
in order to produce a soundscape or soundwave, the RL
agents must control a grain stream that produces a sequence
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Figure 1: The overall system showing how the synthesis en-
gine, feature extractors, learning agents, and interface work
at the top level.

of MFCCs. These are compared to the MFCCs of the origi-
nal sound wave to produce a reinforcement value.

The Granular Synthesizer
Working within a graphical music programming environ-
ment called Pure Data (pd) (Puckette 2005), we created a
granular synthesizer program, called GranWave, that uses
wavetable oscillators to generate sound grains. Following
Road’s description, the grain density can be varied, as can
other parameters such as duration and frequency of oscil-
lation of the wavetable. Gaussian random variation can be
added, for example between 5 and 15 msec durations. There
is a choice of wavetable, depending on desired harmonics,
and stereo panning. Figure 2 shows a stream that is a variety
of grains, with different frequencies, amplitudes, and dura-
tions. A common practice is to make duration proportional
to frequency as can be seen here. Higher frequency grains
are darker and last longer.

Generating a Standing Wave with MFCCs
In a previous publication, we note that the spread and cen-
troid measurements are functions of the linear FFT bins, and



Figure 2: A small portion (.6 sec) of a wave generated by the
granular synthesis engine.

do not correspond well to what we hear as the subjective
pitch spread. At the time, we planned to pursue using a “con-
stant Q” transform (Brown 1991) that makes sense with re-
spect to pitch rather than frequency.

Since then, we discovered that the mel-frequency scale
provides frequency values for pitch as perceived by the hu-
man auditory system for speech. The transform based on this
scale, that produces the mel-frequency cepstral coefficients
(MFCCs) has yielded good results for music as well (Lo-
gan 2000) is more efficient to compute than the Q-transform.
The first experiments using MFCCs are in using reinforce-
ment learning to match one set of goal MFCCs by changing
the max and min frequency values of the grains generated
by the granular synthesis generator. These frequency values
are not tied to duration, which is a fixed value.

The goal MFCCs correspond to one window sample’s
worth of a single (standing) waveform with several harmon-
ics as shown in Figure 3. We wrote the reinforcement learn-
ing (RL) algorithm in C, modifying code from earlier work
using the C interface code provided for pd, and described by
Zmölnig (Zmölnig 2011) and the MFCC code described by
Sakari Tervo and Jukka Pätynen (Tervo and Pätynen 2010)
The RL algorithm is the Sarsa(λ) reinforcement learning al-
gorithm (Sutton and Barto 1998); the pd object is called
GRControl. Its pseudocode is in the Appendix. Using this
configuration, GRControl successfully learned to generate a
grain stream that has the goal MFCC spectral characteristics.

By definition, there are many parameters that can be var-
ied by the actions of GRControl. In these experiments, some
parameters are set empirically (we eventually fix speed at
16msec). Frequency and duration changed via actions taken
by GRControl. These actions move horizontal sliders that
are pd objects that provide discrete values in a given range.
The slider values are sent to the grain generator.

The number for MFCCs is 51 per analysis window.
Initially, the statespace is a 100 by 100 statespace, giving

Figure 3: Goal MFCCs,
shown graphically, for the
standing wave experiment.

Figure 4: Actual MFCCs,
shown graphically, after
reward criteria were met.

every dual slider position a unique state and a unique corre-
sponding reinforcement learning agent.

Reinforcement Criterion
For each window of sound samples, let n = number of mel-
frequency cepstrum coefficients.
Let A be the set of actual coefficients at each time step, and
G be the set of goal coefficients.
Let xi = sign(Gi −Ai) for i = 0, 1, · · · , n− 1.
Let yi = |Gi −Ai|
and finally, to see qualitative behavior, let

X = Σn−1
0 xi (1)

and
Y = Σn−1

0 yi (2)

Then we compute R as:

R =

{
1, if Y <= Ythresh and X <= Xthresh

0, otherwise. (3)

For Ythresh = 20 andXthresh = 10 we show in Figure 4 a
graph of a snapshot of the 51 actual MFCCs. They are shown
as a graph, of the 51 distinct values; i.e. this is not a sound
wave. Figure 3 shows the graph of the goal MFCCs, which
are static for the standing wave goal.

Discussion
We have determined that the RL agents can learn to control
real-time granular sound generation for static sound waves.
Controlling a fixed centroid and spread was a straightfor-
ward reinforcement learning task. Making the reinforcement
criterion a function of the MFCCs of a fixed soundwave
made it a more difficult machine learning problem. The
conversion of the aliased statespace to a non-ambiguaous
one enabled the achievement of matching MFCCs of a goal
and generating standing wave of sound grains, although not
perfectly. The next milestone is in learning to produce se-
quences of MFCCs through generation of soundscapes. We
report on experiments in this direction next, that include fur-
ther interpretation of the MFCCs.

Generating Dynamically changing MFCCs
We report on experiments in using RL to produce a complex
wave-form, by matching MFCCs. We chose a waveform of
1.5 seconds from a Stanley Clarke et al. (Clarke, Miller, and
Wooten 2008) song (Thunder - see Figure 5). We chose the
goal waveform because it is a real-world example, it is com-
plex, and is enjoyable to hear. Our goal in these experiments
is to design an RL-based controller that can run in pure data,
a reinforcement function (of the MFCCs), and control in-
terfaces that generate a 1.5 second waveform that is simi-
lar to the waveform shown in the figure. The similarity is
determined by some function of the difference between the
set of MFCCs that represent this waveform, called the goal
MFCCs, and the MFCCs that are generated during each 1.5
second episode of waveform generation via granular syn-
thesis. 1.5 seconds is 75 windows of 1024 samples each, at
a sampling rate of 44.1k samples per second. Each set of
MFCCs is the output of analysis of one of these windows.



Figure 5: Sound Excerpt from Stanley Clarke et al.’s (Clarke,
Miller, and Wooten 2008) Thunder.

The More Complex Controller

The structure of the new GRControl patch containing the RL
agents is a three-dimensional state-space of Sarsa(λ) rein-
forcement learning agents, with 17 actions each, as shown in
Figure 6. The state-space consists of the current time-step’s
frequency in one dimension, and the previous time-step’s
frequency in the second dimension, and both current grain
amplitude and current grain duration in the third dimension.
The actions make changes to frequency, grain duration, and
grain amplitude volume. We note that the use of one dimen-
sion of the state space to share two variables is not ideal.
However, our PD indexing scheme prevented a straightfor-
ward four-dimensional implementation.

Figure 6: A detailed diagram showing the dynamic sound
wave generation with 75 sets of MFCCs.

Using MFCCs in the Reinforcement Function

The reinforcement criterion is modified to contain the struc-
ture of an episode. One episode is one 1.5 seconds’ worth of
sound generation, equivalent to one “pass” through the goal
wave. Reinforcement Learning, with its delayed reward ca-
pability, can be used in a setting where the reinforcement
value is given at the end of an episode. Each agent’s eligibil-
ity trace, a time-decaying measure of its activity, enables it
to receive part of the reward if it is due.

The modified reinforcement function was defined as:

R =


0, if not at end of episode
1, if ΣŶk <= Ythresh and ΣX̂k <= Xthresh

−1, otherwise.
(4)

where k = 1, 2, · · · , 75 over the 75 episodes, and similarly
to equations (1) and ( 2)

X̂k = Σ
np−1
0 xi (5)

and
Ŷk = Σ

nq−1
0 yi (6)

where np <= 51 and nq <= 51 can be set as parameters
to the reinforcement analysis function. The use of episodes
in this way resembles some of the original pole-balancing
research in the early days of reinforcement learning (Barto,
Sutton, and Anderson 1983).

First Results

Figure 7: A generated waveform that matched criteria
Ythresh = 10, Xthresh = 2 (up to 2 coefficient signs could
be different), and 8 coefficients compared (no normaliza-
tion). The speed was 6. One can see the distinct nature of
the grains in this waveform, and its dissimilarity to the goal
waveform of Figure 5.

Experiments involves setting RL-action output ranges as
well as making changes in the grain engine due to various
discoveries. The output of GRControl changes frequency
and duration. The duration ranges between 3 and 48msec
with GRControl output changes of ±6, ±3, or 0. In one ex-
periment, the Speed was set to 6 with duration varying be-
tween 20 and 28, with resulting waveforms such as the one
in Figure 7 that are quite dissimilar to the goal. This was
however one of our early successes in that the RL agents
were able to learn to control the grain stream and match
a set of criteria. The graph of Reinforcement (R) values is
shown in Figure 8. The total number of negative R vs. posi-
tive R values is almost equal. Furthermore, as the number of
episodes increases, shown on the vertical axis, the number
of R=1 values increases. We include these interim results in
part to give a glimpse of the difficulty of this task, but also
to provide information for the next step, understanding more
about MFCCs.

Using Timbre and Normalized MFCCs
Early in this set of experiments, we used the above crite-
rion, keeping Xthresh and Ythresh the same, and varying
how many of the 51 coefficients to use. Of the 51 MFCCs
coefficients total, the first one is always 0. The second co-
efficient contains a measurement of the power (amplitude
level) of the window of 1024 samples. We dropped that value



Figure 8: Episodes for R = -1: 321 R = -1, for R = 1: 328.
Note the shift from R = -1 on the left, to R=1, on the right,
as the episode number increases along the Y axis.

since the original signal could have a power level that the
grain generator could not produce easily and it is the rel-
ative amplitude levels that are important. Noting that the
first half of a set of MFCCs represent timbre information,
and the second half, pitch, we decided to employ the first
half only. At the 44.1k sampling rate, 1024 samples is 23ms,
and matching the timbre measurements should be sufficient.
These decisions are based on various readings such as Tervo
and Pätynen (Tervo and Pätynen 2010), Brent, (Brent 2010),
and Loughran et al. (Loughran et al. 2008). This leaves 24
coefficients to use.

It is also clear that the threshold Ythresh in Equation 6
depends on the amplitude of the soundwave rather than the
relative values of the Mel-Frequency Cepstral Coefficients
themselves. And the measure is too coarse to be of use as
a reinforcement calculation. We ran some experiments in
normalizing using the power coefficient (the first non-zero
MFCC) to normalize. But found the best success in using
the coefficient values themselves, both goal and actual:

yni =
yi

Σ
nq−1
0 yi

(7)

The resulting reinforcement function is defined as:

R =


0, if not at end of episode
1, if Ŷ n

k <= Ythresh and X̂k <= Xthresh

for at least T episodes
−1, otherwise.

(8)
where k = 1, 2, · · · , 75 over the 75 episodes, and for the
sum of normalized coefficient magnitudes,

Ŷ n
k = Σ

nq−1
0 yni (9)

One of the most successful set of reinforcement criteria
values are np = nq = 8, and Ythresh = 2, Xthresh = 2 and
T=8. After more experimentation with duration and speed,
we determined the best configuration to be duration ranges
between 10 and 54msec with GRControl output changes of
±6, ±3, or 0. and speed to be a constant 16 msec between
grains.

Adding Domain Knowledge
During this experimentation, the maximum number of coef-
ficients that matched per episode is recorded. The frequency
slider has range 86.133 to 1076.65 Hz as before. The re-
inforcement learning controller frequency change output is

Figure 9: Comparison of a matching wave, with the lower
frequency range in place, fixed speed of 16, and the rein-
forcement criteria parameters 2,2, and 8.

integer increments of ±10,±5,±2,±1, and 0. A single +1
move adds 43.066 to the freq. But it adds high frequencies as
well according to the harmonics in the wave that composes
each grain. It became obvious that some domain knowlege is

Figure 10: The wavetable with several harmonics that is os-
cillated in each grain. The harmonics were determined by a
Fourier Analysis of a small (.05 second) window of the goal
waveform.

necessary to improve the performance of this system (after
we ran experiments with several wavetables). In this case,
that means knowing that a bass instrument generated the
original soundwave. A simple adjustment was made by halv-
ing the range of the frequency slider; the slider now ranges
from 43.066 to 538.325. Figure 9 shows a grainstream-
generated waveform compared to the goal.

Finally, a wavetable was constructed that is an approxi-
mation of the first several harmonics of the bass guitar, as
determined by running a Fourier Analysis on a very small
window of the goal soundwave. It is important to make a
distinction here between using this harmonic structure and
using an actual piece of the sound wave itself. The resulting
wavetable with the harmonic weights is shown in Figure 10.

Figure 11: Comparison of a matching wave; speed 16; pa-
rameters 2,2, and 8; lower frequency range; and using Bass
harmonics Wavetable, shown with Thunder soundwave.

Figure 11 is a grain engine-generated soundwave that re-
ceived a value of R=1, shown with the goal sound wave.
At least 8 MFCCs sets must match per episode for R = 1.



Figure 12: R values over 670 episodes, frequency range
halved, speed of 16. 298 R = -1 values, 372 R = 1 values,
and shift toward R = 1 as episode number increases. Bass
harmonics wavetable used, and lower frequency range used
in sliders.

During this experiment, the maximum number of sets of co-
efficients matched was 22 (out of 75) in one episode. Over
the whole experiment, the total number of R = -1 is 298, and
the total R =1 is 372. Figure 12 shows the dramatic shift in
R values from R = -1 to R =1 over the course of the 50,000
iterations or 670 episodes. Recall that an episode is 75 iter-
ations and at its end, either R = -1 or R = 1 is assigned as
reward.

Discussion
The system as is stands can reliably match up to one-third
of the MFCCs of a soundwave in a single episode. This is
an achievement that can lead to even more interesting re-
sults. It is note-worthy that the fairly simple Sarsa(λ) algo-
rithm can learn to generate an action path through time. In
previous work the author has used a machine learning al-
gorithm called LSTM (Gers, Schmidhuber, and Cummins
2000) that can predict and reiterate long sequences, for use
in music re-generation and new generation. The LSTM algo-
rithm may be combined with the RL agents to produce a ma-
chine that can better produce grain streams that have better
matching sequences of MFCCs. The GRControl object can
be instantiated any number of times and longer sequences
may be produced just by multiple copies over time. It can
also provide the starting point for implementations of hier-
archical RL structures such as MOSAIC (Samejima, Doya,
and Kawato 2003).

Two other areas to explore are the Bark scale, with its
possible improvement over the Mel Scale (Brent 2011), and
to match a longer soundwave. Toward this goal, we plan to
continue our experiments in topic models (Li, Wang, and
McCallum 2006) research applied to spectral analysis to
provide parameters to the granular synthesis engine. Topics
could be used to guide what limits on grain sliders whould
be, what parameters should be chosen for MFCCs, or what
the controllers change (grain duration, frequencies, etc.).

Why is Reforming Useful for Games?
Regenerating game music as granular synthesized waves can
provide variations to match implied moods for games, and
hints of memories of previous states/encounters. It can be
done in real-time by recording a player’s voice and regener-
ating it for fun at a later time in the game; or by regenerating
some of a player’s own music for the player’s purpose.
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Appendix: Using the Sarsa(λ) algorithm
Figure 13 shows the pseudo-code for the tabular Sarsa(λ)
algorithm. The algorithm(Sutton and Barto 1998) associates
with each agent some number of actions. An agent contains
two sets of numerical values called Q-values and eligibility
traces, respectively, one of each per possible action. Each
agent uses its set of Q-values to choose an action when the
system is in its state. The eligibility trace et(s, a) is used to

1 Initialize Q(s, a) arbitrarily and e(s, a)=0, for all s, a
2 Repeat (for each episode):
3 Initialize s, a
4 Repeat (for each step of episode):
5 Take action a, observe r, s′
6 Choose a′ from s′ using Q-policy (ε-greedy)
7 δ ← r + γQ(s′, a′)−Q(s, a)
8 e(s, a)← e(s, a) + 1
9 For all s, a:
10 Q(s, a)← Q(s, a) + αδe(s, a)
11 e(s, a)← γλe(s, a)
12 s← s′; a← a′

13 until s is terminal

Figure 13: Pseudo-code for Sarsa(λ) algorithm.

update the Q-value according to how instrumental the asso-
ciated action was in acquiring the most recent reinforcement.
We refer the reader to the Sutton and Barto text (Sutton and
Barto 1998) for more detail and theory.
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