COMPUTER GENERATED MUSIC ASA TEACHING AID FOR

FIRST YEAR COMPUTING!

Judy A. Franklin

Computer Science Department
Snith College

Northampton, MA 01063
jfranklin@cs.smith.edu

ABSTRACT

Computer generated music can be useful in introductory programming courses as the
theme for programming projects as wel as a method for demongtrating algorithms.
Two ideas for student programming projects that have actually been assigned are
described. But the emphasis of the paper is on the use of a technique known as
dgorithmic granular synthesis. Thisisexplained first asacomputer music technique and
then its use as a method for demongtrating agorithms such as sorts and searches is
described. Following this is a discussion of ideas for usng computer music in other
computer Science Courses.

INTRODUCTION

The evolution of computer music has pardlded that of the evolution of the machines
themsdves, both in hardware and in software. Currently computer music is a large area of
research, dominated mainly by music faculty. But it is dso an interesting area of research for
computer science faculty and many of the techniques used to generate music by computer are
borrowed from computer science. Thefield is advanced enough to have textbooks available
that can be used in teaching a course on computer music. For example this author has taught
aseminar course caled Algorithmic Music Composition that included the use of dgorithmssuch
as cdlular automata, neura networks, Markov chains, and context-free and context-sengtive
grammars to generate music, to name a few. Algorithms can choose notes/pitchesto creste a
melody, can add variationsto arunning musical theme or matif, or can sdect phrasesaccording
to an overdl sructurd plan for amusica piece, for example. An excellent tutorid source is
[Roads 1996].

Even a the first year level computer music can be used for projects in an introductory
programming course for computer science mgors. Two such projectsthat involved music are
described in the following section.

Computer music may aso be used asaclasssroom aid. An easy way isto Ssmply play short
computer generated songs to break up a class (especidly useful in classes that are more than
50 minutes in length). This should provide ingpiration as well, knowing that the machines the

To appear in the Journd of Computing in Small Colleges

students are learning to program can be made to produce something that sounds so interesting.
There are many sources for CDs of computer generated music, e.g. [Computer Music Journal
1999, ICMC 1996, SEAMUS 1999]. Students come to look forward to theselittle breaks.
Asasdenote, we have abrief break in theory class, in each class one or two paindromes
are writtenon the board from [Agee 1994]. The studentsenjoy the reward of making it through
adifficult mathematica proof or complex example.

Computer music can aso be used more directly as a means to demongrate agorithms. It
is not a replacement for other teaching techniques, especidly visud ones, but it can augment
these and perhaps create adifferent kind of appreciation of theadgorithms. Inturnthedgorithms
can be used for composition of computer songs. The specific techniques that are emphasized
in this paper fdl in aclass cdled dgorithmic granular synthesis. Thiswill be described in alater
section.

There are many different posshilities for usng computer music in other courses and this
paper ends with a discusson of some possihilities.

TWO MUSICAL PROJECTS

This section describes two musicd projects that have been assgned to students in
introductory courses. Thefirgt isan ear trainer and the second isasong sorter and player. The
ear trainer focuses on if-else statements, switch statements, parameter passing, loopsand using
user input to cause a program to vary in its execution. The song sorter is a more involved
project. It involves looping through an array of numbersthat represent pitches and durations of
notes and counting the rhythmic changes in asong. Then alist of songsis sorted according to
the number of rhythmic changes, and findly the user choosesthe song to play. Songsare stored
as arrays and the students must manipulate an array of pointers to these song arrays. Each of
these projects is described in more detail next.

Ear Trainer

The program repestedly gives two options to a user. The program must give these options
to the user, obtain the user’ s choice, exit awhile loop if the choiceisnot 1 or 2, and passthe
choice to afunctionthat cals ether the optionl() function or the option2() function, depending
on the parameter vaue.

Option 1 is to learn about relative differences in two tones. The user chooses the number
of examples he wants to hear. The program loops. Each time through the loop the program
generates two tones randomly (out of 7 possible tones) and plays them. The user chooses
whether thefirst toneishigher than, equd to, or lower than the second. The computer playsthe
tones again and tells the user the right answer. After dl of the examples are generated, the
percentage of correct responsesis caculated and displayed.

Option 2 isto learn about absol ute tones. The user chooses the number of examples and the
programloops. It generates one tone randomly out of seven possible tones. The user chooses

apitch (viacharacters‘'C', ‘D', ‘'F, ‘G, ‘A’, ‘B’) for atonethat is played and the program
replays the tone with the correct pitch. Once again the percentage of correct responses is
cdculated and displayed at the end of the loop. When these projects were assigned the
environment used was an old version (4.0) of Microsoft Visua C++. A library function cdled
beep(), found under the help menu, takes two parameters and issues a tone through the
maching's speaker. These two parameters are the tone frequency and the duration in
milliseconds. Variables are initidized with the frequencies that beep() needs to generate the
musical tones (i.e. C =262, D = 296, E = 330, F = 349, G = 392, A = 440, B = 494).

The ear trainer was assigned as the first project out of three mgor projects the students
were assigned. The students were given 10 days to 2 weeks to do these projects. In this
project, they learned to use the random number generator as well as the seed function. They
had to understand the use of loops within loops, and the use of a vaue returned by afunction
as aloop parameter. They were given two files. One contained the Begp() function aswell as
a function caled Slegp() that takes a number of milliseconds as a parameter and causes the
program to deep that long. The silence that ensued separated the tones (beeps). The other
contained atemplate program that had the main() function dready defined and empty definitions
for the other functions. They were not alowed to change main() and had to adhereto and learn
about the modularity of the template program. They dso had to use two source files and
compile them together.

Song Sorter

The song sorter project ismore complex. Itsfocusis on manipulating arrays using pointers,
usng asort and a search, and making the program modular by defining and employing severd
functions. They were not given aprogram template for thisone. The project entailssorting alist
of songs by the number of rhythmic changesin them and then repestedly searching the sorted
lig for asong with a particular number of changes. That number isto be chosen by the user and
the user may continue to search for songsin thisway until She wantsto stop. For example, the
following array is declared and initiaized:

intsongl[] = /* Array initidized to notes of song */

{
C1, HALF, GO, HALF, A0, HALF, EO, HALF, FO, HALF, EO, QUARTER,
DO, SIXTEENTH, CO, WHOLE, END

b

The elements are variables. A variable like C1 or EO contains an integer number that is a
tone or sound frequency (asin the ear trainer except there are two octaves of the C mgjor scae
avalable thistime). A varidble like HALF or QUARTER is an integer number that indicates
how long that tone should be played. Whenthefunction Begp() that was used inthe ear trainer
is passed C1, HALF it plays the C above middie C as a hdf note (variable HALF is assgned
acertain number of milliseconds).

A second file called thesongs.c contains 8 songs the students can use for this project.
Students are a'so encouraged to make up their own songsand afew did. Thefiledso contains
the definitions of the variables CO, DO, etc. and SIXTEENTH, EIGHTH, QUARTER, HALF,

and WHOLE. It aso declares END and assignsit the value 0. END is used to check to seeif
the song is over when the program plays the song.

What are these rhythmic changes? The song above, songl, has 3 rhythmic changes. Thefirst
5 notes are HALF notes. The 6th one is a QUARTER, =0 there is a change from HALF to
QUARTER. The 7th oneisa SIXTEENTH, so there is another change from QUARTER to
SIXTEENTH, and the last noteisa WHOLE, o thereis athird change from SIXTEENTH
to WHOLE. A song that has al WHOLE notes (or al HALF, etc.), has O rhythmic changes.

In the program the student must first declare an array of pointers and store the addresses of
the 8 songsinthisarray. The program next playsall of the songsfor the user. Thismust be done
by afunction that takes the address of the array of song pointers asitsfirst parameter and the
number of songs there are as the second. Just before each song is played, the program prints
the number of rhythm changesit contains onto the screen, as well as what each note duration
IS, usng the name of the varidble. A list such as the following should gppear:

HALF

HALF

HALF

HALF

HALF
QUARTER
SIXTEENTH
WHOLE

Findly the songs are sorted using the selection sort (recall the sdlection sort repeatedly puts
the smdlest vaue at the top of the remaining list after comparing and finding it anong al other
edementsin thelist remainder and so sortsin increasing order). The songs are then replayed in
sorted order, viathe samefunction used initidly, and then the program calsafunction thet prints
amenu of choices, giving the range of song changes available to the user. The function returns
the user’ schoice and thisisused by afunction that performs abinary search on the sorted song
lig for a song with the right number of rhythmic changes. If a song is found, it is played.
Searches are repeated until the user enters-1. Recdl that the binary search dgorithm worksin
agmilar manner to someone looking up a number in a telephone book. The midpoint isfound
and it is determined whether the vaue (name) being searched for isto the left or right of the
midpoint. Then that haf is searched by finding its midpoint and finding the haf (by now redly
a quarter) of the ligt in which the vadue may lie. The portion of the lig that is searched is
narrowed down quickly in thisway until either the valueis found or the list runs out.

The students are given the code for the binary search and sdlection sort, but they must modify
them s0 they can be passed and can manipulate an array of pointersto integers, rather than an
aray of integers.

Comments

The sudents generdly responded well to programmaticaly manipulating audio output. There
were some fun moments such as hoticing immediately when someonewasin an infiniteloop thet
contained audio output. Sometimes the lab was pretty noisy and that is an important
consderation, athough headphones can dleviate problems should they occur. | mix this kind

of project with more administrative projects such as building a database to index inventory or
library books and the students like the variety. These music projects succeeded in that nearly
every sudent was able to create aworking program, and many talked about showing it to thelr
friends and family.

GRANULAR SYNTHESISFOR ALGORITHM DEMONSTRATION

Algorithmic granular synthesisis amethod in which computer dgorithms manipulate small
“grans’ of sound. These grains can vary in duration from the shortest duration that can be
distinguished by the human ear to 1 second. The techniques discussed here use grainsthat have
auniform duration of 0.1 seconds. Many, many grains combined make up a new sound wave
or a song. Grains may be separated by silence or may overlap to a small or large degree.
Granular synthesisis abroad term within its narrow field of computer music in that avariety of
techniques are used to achieve it. Some techniques manipulate sound in the time domain and
others manipulate it in the frequency domain. At present we use time domain techniques based
largdy on adgorithms that are used in programming projects in our introductory course for
computer science mgors. We have used the bubble sort, the quick sort and the binary search.

Generating Grainsusing Sinusoids

In order to generate grains using asorting dgorithm, alist of numbersis generated randomly.
Thelid is typicaly from 1000 to 10000 numbersin length. Thislist is sorted. Recall that the
bubble sort worksby comparing two consecutive numbersinalist and swapping themif thefirst
islarger than the second (sorting in increasing order). This causes the largest (heaviest) value
to sink to the bottom of the list and the other vaues to bubble up to the top. Once a vdue
reaches the bottom, that part of the list is no longer sorted, but another pass is made to the
remaning part of the list in the same manner. When we use the bubble sort, each time there is
aswap, theindex of thelarger of the two numbersis recorded in a second array. So the actual
vaues being sorted areirrdlevant. It isonly the index valuesthat are important and thet reflect
the mechanics of the sort. After the sort, a 0.1 second long sinusoid with frequency scaled by
one of these index vaues, is generated; one grain is generated for each index vaue that was
stored in the second array. The grains are placed side by side to create one long sound wave
that demongtrates the agorithm.

Figure 1 shows a sound clip with 7 grains, each with a different frequency. The dark areas
show grains with a very high frequency. In four of the grain depictions the sinusoid that
generates a pitch with low frequency is evident. These sounds can be heard on the web at
[Franklin, 2000].

| Sl e Sl Sediape Wew SN

| RO T | s LT raan: e[S | DR |
Salpetion Skart: [1101 hnd:lT R REEE R

11 FA <4 rh 17 1=
[I | L T O T T N R T B |
111 120 1.1

=15 P TF
[

Figure 1 Clip of bubblesort indices choosing Snusoid frequency of each grain.
No amplitude envelopes or harmonics are used for grain generation.

The quick sort isanother a gorithm that we used to generate grains of sound in order toform
a composite sound wave. Recdl that the quick sort is a recursive dgorithm that firg finds the
midpoint value of the lig. Then it darts at the endpoints and moves toward the center.
Whenever an dement on the left isgreater than the center, it is Swapped with an dement on the
right thet is less than the center in vaue. The result isalist that is composed of two unsorted
sub-ligts, but each dement in the first sub-list is less than each dement in the second sub-list.
Quick sort isthen cdled recursively on each sub-list. Asthe quick sort is sorting our randomly
generated list, whenever two values are swapped, the indices of both values are stored in a
second array, in amanner smilar to that described above for the bubble sort.

Once again, the actud values being sorted areirrdlevant. It isonly theindex vauesthat are
important and that reflect the mechanics of the quick sort. As before, after the sort, a 0.1
second long sinusoid with frequency scded by an index vaue, is generated; one grain is
generated for each index value in the second array. The grains are again placed Sde by sdeto
creete one long sound wave that demondtrates the agorithm.

It is possible to manipulate the grains further, such as by adding harmonics to the snusoid,
or by passing the grain through an amplitude envelope (amplitude corresponds to volume).
Figure 2 shows ashort clip from the sound wave generated by the quick sort grains. Heretwo
levels of harmonics have been added and the grain is passed through an envelope that Smply
ramps up linearly with a dope of 1 and then ramps down with the same dope.

o At e LfERARy AMONGE LW DMORRS
I | T ”l Mu. | L w2, LI I

Hetellun S.a I—Lnrl I"— E”I‘jj jj:l

F .I" ':'.'!.-

H '.ll.'. ! '.l.'l'.'.'.l UI Ly

Figure 2 Index vaues involved in swaps in the quicksort dgorithm are used to choose the
frequency of snusoids that generate the pitches of the grains. These Snusoids include 2
harmonics and each grain has an amplitude envelope.

Oncealigt of valuesis sorted, it can be searched by the binary search. We performed
the binary search and when the midpoint of each sub-list being searched was calculated, we
saved thismidpoint index valuein a second array. These index values were then used as
frequencies for Sne waves as before and grains generated. Thistime the gransare
separated by space S0 they are heard as “blips’ with silence in between. Figure 3 showsthe
grains generated by the binary search. The frequencies change quite a bit in the beginning,
but at the end they are very similar, as the search narrows.

Fie gdit Lewet Bifecty Sedtimgs Mew USRS
I [S LT — I_”il
SElRCTen b‘THI‘t!I‘{.;ﬁb3$ Ilnd:|+.::t=$ I |H_|ILI|_"I|;I.|_"I|;I|‘_|I

Flag Faa: 153005
1

mrsar Fan: 1 A4.0kHL <Hr 1y 11 At
1 1 1 1 1 [[[

F= = |'-‘$ |.’as |'-s

Figure 3. Binary Search. Indices that are successve midpoints in the binary search algorithm
are scaed to choose the frequency of snusoids that generate the pitches of the grains. These
snusoidsinclude 2 harmonics and each grain has an amplitude envelope.

Generating Grainsusing Musical Recordings

Wea 50 used the three dl gorithms above to choose grains of sound from digitized recordings
of people playing instruments. We were able to use the resulting sound waves in our own
musica compostions. One of the people recorded was a senior who pays the guitar (Shana
Negin); usng arecording of another student should beingpiring to first year students. We made
arecording of her improvisng on guitar o that the composition would be origind. We usethe
same array of index vaues obtained from the binary search. Thistime however, these indices
are used aslocationsin the digital sound wave that represents the recording and a sample that
is0.1 secondsin duration istaken from that location. In other wordsagrain isgenerated. These
grains are placed in sequence as before with space in between and Figure 4 shows the result.
Notice thet the grains are quiite digtinguishable in the beginning but are difficult if not impossible
to distinguish by the end. The midpoints of the binary search are so close as the search is
narrowed that they are used to choose samples that are highly overlgpping and Sart a nearly
the same location in the sound wave.

Qe P fewel Lffects Seftnge tew LR

1 ‘:-.|:|||:|I|I s ”I 1"z I [e Z,mm;l.l-l-
oo s S e [N 50| - 5

o fucy o4 S Lussar bol 7Ll A1 IHH ke | LF D6 Ll
T[T LILLE (N LILL (LI LI I LI 1L I I o L L L L LR
BELEEN DAL BN AL D A (M P AL PR 1

o it o o i o 4

Figure 4. Binary search Using guitar improvisation as sound wave. Indices from the
midpoints of the search agorithm are used to choose the location of grains of sound from the
origina sound file,

Findly, a recording was aso made of a flute improvisation (by the author) and the list of
indices resulting from a bubble sort were used in the same way to take out granular samples of
the improvisation, usng each index asalocation in the origind sound wave. Whileit is difficult
to seetheresult in avisud representation of aclip of the composed sound wave, it can be seen
in Figure 5 that thereis a varied but reptitive structure that is a result of the bubble sort and
that the new sound wave is complex enough to be used in a musical composition creeted as
computer music. Indeed, it has been.

. Dl e feewel Difcdy Sedtfups Wew Lhes

Ju: | [R R - DE
Seleetiom ZLirL: | l:z% :cl Fnd: | (33 e jjlﬂm EjE

F’ '| P .:3 .l:-lI IZI.I St P-:- o 3 17 o Iﬁ P-I! s -: J b1t
|| |) 1 |] [N
| II I-1I L I1I

Figure 5 Bubble sort with flute improvisation as sound wave. Indices from the swvaps made
in the sort agorithm are used to choose the location of grains of sound from the origind
sound wave.

USING COMPUTER MUSIC IN OTHER CLASSES

Grammars have been used to represent music in various forms as early asthe ninth century
[Roads 1985]. There are many referencesto worksusing grammarsin thisway. [Roads 1985]
has a nice overview in a chapter caled “Grammars as Representations for Music.” Another
reference that has been used for a project in teaching theory of computation (at the
undergraduate leve) is [Johnson-Laird 1991] in which regular and context-free grammars are
used to characterize different processes underlying musica improvisation. Students have
presented this paper to the class and one student went on to present it in her music theory class.
[Kohonen 1991] describes an agorithm that uses a context-sendtive grammar to devise rules
that explain how a set of sample songs are generated. These grammatica rules are then used
withaseed mel ody to generate anew mel odic compogtion. If two rules have the samel eft hand
sde, oneischosen randomly. A student implemented this technique in an upper level seminar
course on agorithmic music compaosition.

Many other courses could be augmented with music. Circuits and Systems and Computer
Architecture are two candidates. For example, we can place asmal amplifier and speaker on
acircuit board with the microprocessor chip that is aready used in this course and the project
will be to build the circuit to do granular synthesis. In computer architecture our students read
papers and make presentations on state-of-the-art of computer architecture design. Thereare
ways to bring music eveninto thisforay. Music workstations are available for serious computer
musc composers who develop eectronic instruments via computer. These are high end
processors that are integrated with musical keyboards and development software. It could be
funto look at the architectural desgn decisons that were made to tailor that machine for its
musica use, for example.

DISCUSSION

Computer music techniques can be used to €ucidate the dgorithms and concepts taught in
introductory programming courses. The use of mus ¢ gpplicationsisa so areminder to computer
science students that they can apply what they learn to artistic enterprises rather than thinking
of what they learn as soldly technologica or business tools. The introductory course may be
more accessble to non-mgors by bringing in aliberd arts influence.

The granular synthesis methods briefly described above demonstrate the agorithms and can
even smply be used as an audio aid to make the course more fun in order to foster learning.
The next gep in using dgorithms for music in the introductory course is to develop specific
teaching modules that use music to demonstrate concepts and as example projects and
gpplications. In particular, sometime must be devoted to making extended examplesthat show
each gage of the agorithms shown above.

RTamix (Red-Time cmix) is software written in C/C++ that is fredy available on the web
(http://mww.musi c.columbiaedu/cmix/). The complete source code is available and one can
programmaticaly implement instruments (asthey arecalled) for granular synthesisor other kinds
of synthesis. Furthermore, functions needed to create and read and write sound files are
included. Thefiguresin this paper are sngpshots of windows of the Sound Editor from aSilicon
Graphics Machine.

REFERENCES
Agee, Jon 1994. So Many Dynamos! HarperCollinsCanadaltd. Canada.
Computer Music Journd. 1999. Sound Anthology. MIT Press. Cambridge MA.

Franklin, Judy 2000. Listen to Computer Science Algorithms.
“http:/AMmww.cs.smith.edw/~jfrankli/mus c/dgorithms.html”.

ICMC 1996. International Computer Music Conference CD. International Computer Music
Association (http:/AMww.computermusic.org).

Johnson-Laird, P. N. 1991, Jazz Improvisation: A Theory a the Computationa Levd. in
Representing Musical Stucture, Howel, West, and Cross eds., Academic Press, London.

Kohonen, T., Laine, P., Tiits, K. & Torkkola, K. (1991) A nonheuristic automatic composing
method. In P.M. Todd & D.G. Loy (Eds.), Music and Connectionism (pp. 229-242). MIT
Press. Cambridge, MA.

Roads, Curtis 1996. The Computer Music Tutorid. MIT Press. Cambridge MA.

SEAMUS 1999. Music from SEAMUSval. 9. The Society for Electro-Acoustic Muscinthe
United States. Los Angeles CA.

