
1To appear in the Journal of Computing in Small Colleges

COMPUTER GENERATED MUSIC AS A TEACHING AID FOR

FIRST YEAR COMPUTING1

Judy A. Franklin
Computer Science Department
Smith College
Northampton, MA 01063
jfranklin@cs.smith.edu

ABSTRACT

Computer generated music can be useful in introductory programming courses as the
theme for programming projects as well as a method for demonstrating algorithms.
Two ideas for student programming projects that have actually been assigned are
described. But the emphasis of the paper is on the use of a technique known as
algorithmic granular synthesis. This is explained first as a computer music technique and
then its use as a method for demonstrating algorithms such as sorts and searches is
described. Following this is a discussion of ideas for using computer music in other
computer science courses.

INTRODUCTION

 The evolution of computer music has paralleled that of the evolution of the machines
themselves, both in hardware and in software. Currently computer music is a large area of
research, dominated mainly by music faculty. But it is also an interesting area of research for
computer science faculty and many of the techniques used to generate music by computer are
borrowed from computer science. The field is advanced enough to have textbooks available
that can be used in teaching a course on computer music. For example this author has taught
a seminar course called Algorithmic Music Composition that included the use of algorithms such
as cellular automata, neural networks, Markov chains, and context-free and context-sensitive
grammars to generate music, to name a few. Algorithms can choose notes/pitches to create a
melody, can add variations to a running musical theme or motif, or can select phrases according
to an overall structural plan for a musical piece, for example. An excellent tutorial source is
[Roads 1996].

 Even at the first year level computer music can be used for projects in an introductory
programming course for computer science majors. Two such projects that involved music are
described in the following section.

 Computer music may also be used as a classroom aid. An easy way is to simply play short
computer generated songs to break up a class (especially useful in classes that are more than
50 minutes in length). This should provide inspiration as well, knowing that the machines the

students are learning to program can be made to produce something that sounds so interesting.
There are many sources for CDs of computer generated music, e.g. [Computer Music Journal
1999, ICMC 1996, SEAMUS 1999]. Students come to look forward to these little breaks.
As a side note, we have a brief break in theory class; in each class one or two palindromes
are written on the board from [Agee 1994]. The students enjoy the reward of making it through
a difficult mathematical proof or complex example.

 Computer music can also be used more directly as a means to demonstrate algorithms. It
is not a replacement for other teaching techniques, especially visual ones, but it can augment
these and perhaps create a different kind of appreciation of the algorithms. In turn the algorithms
can be used for composition of computer songs. The specific techniques that are emphasized
in this paper fall in a class called algorithmic granular synthesis. This will be described in a later
section.

 There are many different possibilities for using computer music in other courses and this
paper ends with a discussion of some possibilities.

TWO MUSICAL PROJECTS

 This section describes two musical projects that have been assigned to students in
introductory courses. The first is an ear trainer and the second is a song sorter and player. The
ear trainer focuses on if-else statements, switch statements, parameter passing, loops and using
user input to cause a program to vary in its execution. The song sorter is a more involved
project. It involves looping through an array of numbers that represent pitches and durations of
notes and counting the rhythmic changes in a song. Then a list of songs is sorted according to
the number of rhythmic changes, and finally the user chooses the song to play. Songs are stored
as arrays and the students must manipulate an array of pointers to these song arrays. Each of
these projects is described in more detail next.

Ear Trainer

 The program repeatedly gives two options to a user. The program must give these options
to the user, obtain the user’s choice, exit a while loop if the choice is not 1 or 2, and pass the
choice to a function that calls either the option1() function or the option2() function, depending
on the parameter value.

 Option 1 is to learn about relative differences in two tones. The user chooses the number
of examples s/he wants to hear. The program loops. Each time through the loop the program
generates two tones randomly (out of 7 possible tones) and plays them. The user chooses
whether the first tone is higher than, equal to, or lower than the second. The computer plays the
tones again and tells the user the right answer. After all of the examples are generated, the
percentage of correct responses is calculated and displayed.

 Option 2 is to learn about absolute tones. The user chooses the number of examples and the
program loops. It generates one tone randomly out of seven possible tones. The user chooses

a pitch (via characters ‘C’, ‘D’, ‘F’, ‘G’, ‘A’, ‘B’) for a tone that is played and the program
replays the tone with the correct pitch. Once again the percentage of correct responses is
calculated and displayed at the end of the loop. When these projects were assigned the
environment used was an old version (4.0) of Microsoft Visual C++. A library function called
beep(), found under the help menu, takes two parameters and issues a tone through the
machine’s speaker. These two parameters are the tone frequency and the duration in
milliseconds. Variables are initialized with the frequencies that beep() needs to generate the
musical tones (i.e. C = 262, D = 296, E = 330, F = 349, G = 392, A = 440, B = 494).

 The ear trainer was assigned as the first project out of three major projects the students
were assigned. The students were given 10 days to 2 weeks to do these projects. In this
project, they learned to use the random number generator as well as the seed function. They
had to understand the use of loops within loops, and the use of a value returned by a function
as a loop parameter. They were given two files. One contained the Beep() function as well as
a function called Sleep() that takes a number of milliseconds as a parameter and causes the
program to sleep that long. The silence that ensued separated the tones (beeps). The other
contained a template program that had the main() function already defined and empty definitions
for the other functions. They were not allowed to change main() and had to adhere to and learn
about the modularity of the template program. They also had to use two source files and
compile them together.

Song Sorter

 The song sorter project is more complex. Its focus is on manipulating arrays using pointers,
using a sort and a search, and making the program modular by defining and employing several
functions. They were not given a program template for this one. The project entails sorting a list
of songs by the number of rhythmic changes in them and then repeatedly searching the sorted
list for a song with a particular number of changes. That number is to be chosen by the user and
the user may continue to search for songs in this way until s/he wants to stop. For example, the
following array is declared and initialized:

int song1[] = /* Array initialized to notes of song */
{
 C1, HALF, G0, HALF, A0, HALF, E0, HALF, F0, HALF, E0, QUARTER,
 D0, SIXTEENTH, C0, WHOLE, END
};

 The elements are variables. A variable like C1 or E0 contains an integer number that is a
tone or sound frequency (as in the ear trainer except there are two octaves of the C major scale
available this time). A variable like HALF or QUARTER is an integer number that indicates
how long that tone should be played. When the function Beep() that was used in the ear trainer
is passed C1, HALF it plays the C above middle C as a half note (variable HALF is assigned
a certain number of milliseconds).

 A second file called thesongs.c contains 8 songs the students can use for this project.
Students are also encouraged to make up their own songs and a few did. The file also contains
the definitions of the variables C0, D0, etc. and SIXTEENTH, EIGHTH, QUARTER, HALF,

and WHOLE. It also declares END and assigns it the value 0. END is used to check to see if
the song is over when the program plays the song.

 What are these rhythmic changes? The song above, song1, has 3 rhythmic changes. The first
5 notes are HALF notes. The 6th one is a QUARTER, so there is a change from HALF to
QUARTER. The 7th one is a SIXTEENTH, so there is another change from QUARTER to
SIXTEENTH, and the last note is a WHOLE, so there is a third change from SIXTEENTH
to WHOLE. A song that has all WHOLE notes (or all HALF, etc.), has 0 rhythmic changes.

 In the program the student must first declare an array of pointers and store the addresses of
the 8 songs in this array. The program next plays all of the songs for the user. This must be done
by a function that takes the address of the array of song pointers as its first parameter and the
number of songs there are as the second. Just before each song is played, the program prints
the number of rhythm changes it contains onto the screen, as well as what each note duration
is, using the name of the variable. A list such as the following should appear:
 HALF
 HALF
 HALF
 HALF
 HALF
 QUARTER
 SIXTEENTH
 WHOLE

 Finally the songs are sorted using the selection sort (recall the selection sort repeatedly puts
the smallest value at the top of the remaining list after comparing and finding it among all other
elements in the list remainder and so sorts in increasing order). The songs are then replayed in
sorted order, via the same function used initially, and then the program calls a function that prints
a menu of choices, giving the range of song changes available to the user. The function returns
the user’s choice and this is used by a function that performs a binary search on the sorted song
list for a song with the right number of rhythmic changes. If a song is found, it is played.
Searches are repeated until the user enters -1. Recall that the binary search algorithm works in
a similar manner to someone looking up a number in a telephone book. The midpoint is found
and it is determined whether the value (name) being searched for is to the left or right of the
midpoint. Then that half is searched by finding its midpoint and finding the half (by now really
a quarter) of the list in which the value may lie. The portion of the list that is searched is
narrowed down quickly in this way until either the value is found or the list runs out.

 The students are given the code for the binary search and selection sort, but they must modify
them so they can be passed and can manipulate an array of pointers to integers, rather than an
array of integers.

Comments

 The students generally responded well to programmatically manipulating audio output. There
were some fun moments such as noticing immediately when someone was in an infinite loop that
contained audio output. Sometimes the lab was pretty noisy and that is an important
consideration, although headphones can alleviate problems should they occur. I mix this kind

of project with more administrative projects such as building a database to index inventory or
library books and the students like the variety. These music projects succeeded in that nearly
every student was able to create a working program, and many talked about showing it to their
friends and family.

GRANULAR SYNTHESIS FOR ALGORITHM DEMONSTRATION

 Algorithmic granular synthesis is a method in which computer algorithms manipulate small
“grains” of sound. These grains can vary in duration from the shortest duration that can be
distinguished by the human ear to 1 second. The techniques discussed here use grains that have
a uniform duration of 0.1 seconds. Many, many grains combined make up a new sound wave
or a song. Grains may be separated by silence or may overlap to a small or large degree.
Granular synthesis is a broad term within its narrow field of computer music in that a variety of
techniques are used to achieve it. Some techniques manipulate sound in the time domain and
others manipulate it in the frequency domain. At present we use time domain techniques based
largely on algorithms that are used in programming projects in our introductory course for
computer science majors. We have used the bubble sort, the quick sort and the binary search.

Generating Grains using Sinusoids

 In order to generate grains using a sorting algorithm, a list of numbers is generated randomly.
The list is typically from 1000 to 10000 numbers in length. This list is sorted. Recall that the
bubble sort works by comparing two consecutive numbers in a list and swapping them if the first
is larger than the second (sorting in increasing order). This causes the largest (heaviest) value
to sink to the bottom of the list and the other values to bubble up to the top. Once a value
reaches the bottom, that part of the list is no longer sorted, but another pass is made to the
remaining part of the list in the same manner. When we use the bubble sort, each time there is
a swap, the index of the larger of the two numbers is recorded in a second array. So the actual
values being sorted are irrelevant. It is only the index values that are important and that reflect
the mechanics of the sort. After the sort, a 0.1 second long sinusoid with frequency scaled by
one of these index values, is generated; one grain is generated for each index value that was
stored in the second array. The grains are placed side by side to create one long sound wave
that demonstrates the algorithm.

 Figure 1 shows a sound clip with 7 grains, each with a different frequency. The dark areas
show grains with a very high frequency. In four of the grain depictions the sinusoid that
generates a pitch with low frequency is evident. These sounds can be heard on the web at
[Franklin, 2000].

Figure 1 Clip of bubblesort indices choosing sinusoid frequency of each grain.
No amplitude envelopes or harmonics are used for grain generation.

 The quick sort is another algorithm that we used to generate grains of sound in order to form
a composite sound wave. Recall that the quick sort is a recursive algorithm that first finds the
midpoint value of the list. Then it starts at the endpoints and moves toward the center.
Whenever an element on the left is greater than the center, it is swapped with an element on the
right that is less than the center in value. The result is a list that is composed of two unsorted
sub-lists, but each element in the first sub-list is less than each element in the second sub-list.
Quick sort is then called recursively on each sub-list. As the quick sort is sorting our randomly
generated list, whenever two values are swapped, the indices of both values are stored in a
second array, in a manner similar to that described above for the bubble sort.

 Once again, the actual values being sorted are irrelevant. It is only the index values that are
important and that reflect the mechanics of the quick sort. As before, after the sort, a 0.1
second long sinusoid with frequency scaled by an index value, is generated; one grain is
generated for each index value in the second array. The grains are again placed side by side to
create one long sound wave that demonstrates the algorithm.

 It is possible to manipulate the grains further, such as by adding harmonics to the sinusoid,
or by passing the grain through an amplitude envelope (amplitude corresponds to volume).
Figure 2 shows a short clip from the sound wave generated by the quick sort grains. Here two
levels of harmonics have been added and the grain is passed through an envelope that simply
ramps up linearly with a slope of 1 and then ramps down with the same slope.

Figure 2 Index values involved in swaps in the quicksort algorithm are used to choose the
frequency of sinusoids that generate the pitches of the grains. These sinusoids include 2

harmonics and each grain has an amplitude envelope.

 Once a list of values is sorted, it can be searched by the binary search. We performed
the binary search and when the midpoint of each sub-list being searched was calculated, we
saved this midpoint index value in a second array. These index values were then used as
frequencies for sine waves as before and grains generated. This time the grains are
separated by space so they are heard as “blips” with silence in between. Figure 3 shows the
grains generated by the binary search. The frequencies change quite a bit in the beginning,
but at the end they are very similar, as the search narrows.

Figure 3. Binary Search. Indices that are successive midpoints in the binary search algorithm
are scaled to choose the frequency of sinusoids that generate the pitches of the grains. These
sinusoids include 2 harmonics and each grain has an amplitude envelope.

Generating Grains using Musical Recordings

 We also used the three algorithms above to choose grains of sound from digitized recordings
of people playing instruments. We were able to use the resulting sound waves in our own
musical compositions. One of the people recorded was a senior who pays the guitar (Shana
Negin); using a recording of another student should be inspiring to first year students. We made
a recording of her improvising on guitar so that the composition would be original. We use the
same array of index values obtained from the binary search. This time however, these indices
are used as locations in the digital sound wave that represents the recording and a sample that
is 0.1 seconds in duration is taken from that location. In other words a grain is generated. These
grains are placed in sequence as before with space in between and Figure 4 shows the result.
Notice that the grains are quite distinguishable in the beginning but are difficult if not impossible
to distinguish by the end. The midpoints of the binary search are so close as the search is
narrowed that they are used to choose samples that are highly overlapping and start at nearly
the same location in the sound wave.

Figure 4. Binary search Using guitar improvisation as sound wave. Indices from the
midpoints of the search algorithm are used to choose the location of grains of sound from the
original sound file.

 Finally, a recording was also made of a flute improvisation (by the author) and the list of
indices resulting from a bubble sort were used in the same way to take out granular samples of
the improvisation, using each index as a location in the original sound wave. While it is difficult
to see the result in a visual representation of a clip of the composed sound wave, it can be seen
in Figure 5 that there is a varied but repetitive structure that is a result of the bubble sort and
that the new sound wave is complex enough to be used in a musical composition created as
computer music. Indeed, it has been.

Figure 5 Bubble sort with flute improvisation as sound wave. Indices from the swaps made
in the sort algorithm are used to choose the location of grains of sound from the original

sound wave.

USING COMPUTER MUSIC IN OTHER CLASSES

 Grammars have been used to represent music in various forms as early as the ninth century
[Roads 1985]. There are many references to works using grammars in this way. [Roads 1985]
has a nice overview in a chapter called “Grammars as Representations for Music.” Another
reference that has been used for a project in teaching theory of computation (at the
undergraduate level) is [Johnson-Laird 1991] in which regular and context-free grammars are
used to characterize different processes underlying musical improvisation. Students have
presented this paper to the class and one student went on to present it in her music theory class.
[Kohonen 1991] describes an algorithm that uses a context-sensitive grammar to devise rules
that explain how a set of sample songs are generated. These grammatical rules are then used
with a seed melody to generate a new melodic composition. If two rules have the same left hand
side, one is chosen randomly. A student implemented this technique in an upper level seminar
course on algorithmic music composition.

 Many other courses could be augmented with music. Circuits and Systems and Computer
Architecture are two candidates. For example, we can place a small amplifier and speaker on
a circuit board with the microprocessor chip that is already used in this course and the project
will be to build the circuit to do granular synthesis. In computer architecture our students read
papers and make presentations on state-of-the-art of computer architecture design. There are
ways to bring music even into this foray. Music workstations are available for serious computer
music composers who develop electronic instruments via computer. These are high end
processors that are integrated with musical keyboards and development software. It could be
fun to look at the architectural design decisions that were made to tailor that machine for its
musical use, for example.

DISCUSSION

Computer music techniques can be used to elucidate the algorithms and concepts taught in
introductory programming courses. The use of music applications is also a reminder to computer
science students that they can apply what they learn to artistic enterprises rather than thinking
of what they learn as solely technological or business tools. The introductory course may be
more accessible to non-majors by bringing in a liberal arts influence.

The granular synthesis methods briefly described above demonstrate the algorithms and can
even simply be used as an audio aid to make the course more fun in order to foster learning.
The next step in using algorithms for music in the introductory course is to develop specific
teaching modules that use music to demonstrate concepts and as example projects and
applications. In particular, some time must be devoted to making extended examples that show
each stage of the algorithms shown above.

RTcmix (Real-Time cmix) is software written in C/C++ that is freely available on the web
(http://www.music.columbia.edu/cmix/). The complete source code is available and one can
programmatically implement instruments (as they are called) for granular synthesis or other kinds
of synthesis. Furthermore, functions needed to create and read and write sound files are
included. The figures in this paper are snapshots of windows of the Sound Editor from a Silicon
Graphics Machine.

REFERENCES

Agee, Jon 1994. So Many Dynamos! HarperCollinsCanadaLtd. Canada.

Computer Music Journal. 1999. Sound Anthology. MIT Press. Cambridge MA.

Franklin, Judy 2000. Listen to Computer Science Algorithms.
“http://www.cs.smith.edu/~jfrankli/music/algorithms.html”.

ICMC 1996. International Computer Music Conference CD. International Computer Music
Association (http://www.computermusic.org).

Johnson-Laird, P. N. 1991, Jazz Improvisation: A Theory at the Computational Level. in
Representing Musical Stucture, Howell, West, and Cross eds., Academic Press, London.

Kohonen, T., Laine, P., Tiits, K. & Torkkola, K. (1991) A nonheuristic automatic composing
method. In P.M. Todd & D.G. Loy (Eds.), Music and Connectionism (pp. 229-242). MIT
Press. Cambridge, MA.

Roads, Curtis 1996. The Computer Music Tutorial. MIT Press. Cambridge MA.

SEAMUS 1999. Music from SEAMUS vol. 9. The Society for Electro-Acoustic Music in the
United States. Los Angeles CA.

