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Abstract

This paper describes an analysis of the biped
robot domain. Papers in the robotics literature
focus on bipeds that walk and run. Typically
biped research is centered on the use of one or
more models of the motion dynamics. This pa-
per presents three categories of these models: 1)
Joint level models 2) leg level models, and 3)
body level models. A contribution of this paper
is to expose the way these models are used and to
show the simplifying assumptions that are used
to employ them to control a biped. The second
contribution is to cast the simplifications into a
qualitative framework and open the field to the
idea of using qualitative reasoning for dynamic
robot control.

Background and Philosophy

Sensory-motor control, with emphasis on controlling
dynamically changing systems, unifies most avenues of
exploration in physical agents or robots.

Navigation cannot be completely decoupled from the
dynamic motion of the agent. In fact it is advantageous
to use dynamic features of the agent and its environ-
ment in order to manipulate and navigate throughout
it. It is important for a car-driving agent to recognize
and react to the feel of slippery pavement under spin-
ning tires. Navigation can involve an analysis of the
dynamic flow of traffic. Obstacle avoidance is of course
necessary for driving under any real situation. Even
the vibarations of the steering wheel and the brake
and accelerator pedals provide important feedback.

Vacuuming floors in an ordinary house is more than
finding the best floor covering method. There may be
moving obstacles. The vacuumer may cause an object
to move and may have to deal with the consequences
(oops, catch that lamp before it crashes to the floor!).
Dealing with pets requires alot of knowledge about how
to deal with dynamic situations.

Any Al system that interacts with the physical world
must be able to deal with dynamic situations and
employ perception-action behaviors. Furthermore the
agent should be able to learn from its experiences. 1

have explored these areas in the past by using engi-
neering control methods to control robots (Djaferis-87
& Franklin-88). I have also combined these methods
with reinforcement learning via artificial neural net-
works (ANNs) to improve control (Franklin-89) and
used ANN methods alone to control dynamic sys-
tems (Benbrahim-92,Gullapalli-94). I have also used
ANNs in manufacturing process monitoring (Franklin-
92). This experience has led me to the following con-
clusions.

Seldom are conventional engineerings methods used
alone to control research robots anymore without some
form of adaptation or learning. Conversely, ANN
methods alone are not sufficient for controlling a real
robot without augmenting them with some form of
rudimentary control at least; for either the robot will
be dangerous to itself and others or it will not be able
to learn.

At some point both conventional control and ANNs
fall short in providing an agent with the ability to rea-
son about a dynamic situation and to plan ahead. It is
at this level that qualitative reasoning about physical
systems (QR) will be useful. I have examined QR and
its potential for control (Franklin-90) and used an en-
visionment of a simple dynamic system (deKleer-77) to
provide goals and an input representation for an ANN
learning controller (Franklin-92a).

The next step is to use a qualitative reasoning abil-
ity to make high level control decisions on-line. I am
in pursuit of that step. In addition my mission in any
research is to use real systems rather than simulation.
Most of my past work has used hardware robotic sys-
tems. Any agent developed to interact with the phys-
ical world must in fact do that, else why bother?

The Biped Agent

I am in the preliminary stages of using a biped robot to
study the hybrid use of control, connectionist learning,
and QR. Besides standard sensory-motor control, two
legs offer imaginative high-level uses for a robotic agent
such as kicking the refrigerator door shut or blocking
the exit of a pet through a door with one leg.

To understand the problem of using a biped I have
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studied various dynamic biped models and have cate-
gorized them in three levels, according to their use in
control: joint control, leg control, and body control.
The description of these models is the main content of

this paper.

Joint Level

In joint level control, given the desired body and leg
trajectories, the controller must control the position
and/or torques at the joints of the biped in order to
produce desired trajectories. At the joint level, the
Lagrangian dynamic model is generally used.

The Lagrangian dynamic model is based on the use
of the Lagrangian, the difference between the kinetic
and potential energy of a system: L = K — P (see
Paul-81). Given that ¢; are the coordinates in which
the energies are expressed, (generally the joint angles)
then the forces (or torques) F; in those coordinates are
given by:

F.'=——.j—5‘; 03]

where the ¢; are the corresponding velocities. This
formulation is directly applicable to finding the dy-
namic relationship between the positions and velocities
of the joints of a biped and the corresponding forces or
torques.

This results in a general model for a robot with n
generalized coordinates that is a set of second order
differential equations given below (Vukobratovic-83).

P = H(q)i + h(g,§) + i1 60(9) Pt (2)
for
P - nx1 vector of generalized forces in the joints
g - nx1 vector of generalized coordinates
H(q) - nxn inertial matrix
h(q, §) - nx1 vector of Coriolis, centrifugal
and gravitational moments
& = { 1 if contact exists in the I** point, 0 otherwise}
9(g) - nx3 vector of positions of I** contact
point wrt the centers of joints
Fy - vector of force acting on the I* contact point
This model of robot dynamics is highly non-
linear and coupled. To gain an understanding
of the complexity of these equations, consider the
simple planar biped of Figure 1. Golliday and
Hemami (Golliday-77) give the free-fall dynamics of
this simple kneeless planar robot, for a,8,7 co-
efficients of mass, inertia, and leg parameters, as
0“1 — ag(Zhcosty — yrsindy) + Pasinby = —va M2
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Figure 1: Simple 3 joint, kneeless planar biped

Simplified Models at the Joint Level

In control, generally the goal is to find the forces and
torques that will produce desired position and velocity
trajectories. However, controllers do not exist that can
directly use the Lagrangian model above. If we just in-
sert the desired positions and velocities and compute
the torques, errors in the model will produce errors in
the robot. This is why we use feedback in control. Er-
rors in desired vs. actual trajectories are used to adjust
the torques applied to the joints. The way in which the
adjustments are computed, based on stability criteria,
largely, is the basis for much of control theory.

Most control methods require a certain form of
model. The most prevalent is a linear model. One way
to address this requirement is to linearize the model.
There are several methods. One method is to linearize
the system by subtracting the nonlinear terms. This
is accomplished by directly using them as part of the
control signal. A feedback controller is then designed
for the remaining linear part of the system (Hemami-
83,Freund-82).

Another method is to take only the first order terms
of a Taylor series expansion about an operating point.
For example, Golliday and Hemami (Golliday-77) lin-
earize about the 0 point: the upright stand-still posi-
tion of the biped.

A third method of linearization is simply to neglect
terms. Miura and Shimoyama (Miura-84) obtain a
model in which the accelerations and velocities of the
joints are linear in the joint positions and torques, by
neglecting centrifugal, coriolis, and gravity terms:

f, = Az, + Bu, + E, £, =Cz, + Dus  (4)

for z, a vector of joint positions and velocities in the
frontal plane and z, a vector of joint positions and
velocities in the saggital plane (see Figures 2 and 3).
They also assume a stilt type, kneeless robot and this
eases model manipulation. It is more accurate to ne-
glect terms in this simple biped than in one that is
highly articulated.

Another method of simplification is decoupling. Gol-
liday and Hemami find a nonlinear equation for each
of 4 walking phases (based on equations 3):

right leg support phase

right leg to left leg support exchange phase
left leg support phase

left leg to right leg support exchange
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Figure 2: Frontal Plane of Biped Robot

and then linearize, using the Taylor Series expansion
about the 0 point. They then decouple, ignoring terms
that couple the joints together. They are also using a
kneeless biped. It is also possible to derive a decoupled
model that is still nonlinear, if desired.

Another issue in model simplification is simplifying
because of the goals or purposes. A goal may be to
apply a well-known control method. We may also con-
strain the robot’s activities (e.g. not allow the velocity
to reach a large enough magnitude to produce inter-
joint coupling effects). A goal may also be able to
conceptualize the system in order to reason about its
behavior. If we can neglect some terms and recast the
model in certain ways, we may be able to determine
its behavior. This is more relevant at the leg and body
levels of control.

Dynamic models expressed in generalized coordi-
nates or joint level coordinates are appropriate when
examining the dynamics at the joint level, and manip-
ulating torques at the joints. However, at the leg and
body levels, the models are usually expressed in Carte-
sian Coordinates, with respect to some reference point
on the ground.

Leg Level

In leg level control, the controller is given the desired
trajectories of the legs and must determine foot place-
ment and step length. One way to model the legs is to
focus on the Cartesian position of each foot as a func-
tion of time. These positions can be determined from
the kinematic equations of motion. The model may
be simplified by considering only the effects of a single
leg’s joint positions and velocities on the placement of
its foot.

The dynamic models above are expressed in gener-
alized coordinates or joint level coordinates. This is
appropriate when examining the dynamics at the joint
level, and manipulating torques at the joints. However,
at the leg and body levels, the models are usually ex-
pressed in Cartesian Coordinates, with respect to some
reference point on the ground.

Figure 3: Saggital Plane of Biped Robot

Figures 2 and 3 show views of the frontal and saggital
planes of a biped robot with 7 joints, 4 in the frontal
plane and 3 in the saggital plane. These views are
modelled after Zheng’s SD-2 biped (Zheng-89) which
in part provided a basis for the construction of the
hardware biped described in last section.

Leg models are often derived in terms of desired foot
placement. For example, Zheng and Shen (Zheng-90)
develop a transitional gait for 2 biped walking from
level ground to a sloping surface. The position and
orientation of the foot is generated by using force in-
formation from sensors at the bottom of the feet. Then
the transitional phases are first derived in terms of foot
placements and these are changed into joint trajecto-
ries,

Another idea is to use the stilt model and then get
each leg to emulate stilt model motion. In this way
each leg functions on its own with trajectories given
by the stilt model. These trajectories in turn provide
trajectories for the biped joints.

Miller (Miller-94) decouples the legs kinematically
to generate approximations of hip and knee joint an-
gles for gait control. He uses a simple planar model of
leg kinematics and ignores coupling between leg seg-
ment orientations in the frontal and saggital planes,
and coupling between legs.

Body Level

At the body level, the height of the biped may be con-
trolled, a desired gait may be implemented, or a certain
behavior (or sequence of behaviors) may be required.
The robot may walk, run, climb stairs, hop, kick, shuf-
fle sideways, or even dance. How are these behaviors
modelled?

The joint and leg levels are somewhat “introspec-
tive” in that the robot controller is more concerned
with the robot itself. At the body level, interaction
with the outside world is the purpose. The use of a
particular model will depend on environmental circum-
stances as well as the goals of the robot’s interaction.
Besides understanding how to model these behaviors,
understanding how to choose and use the models is
essential.

The models used at the body level of control repre-
sent desired qualitative behaviors of the whole biped,
generally irrespective of the number of joints or the ex-
act configuration of the biped. There are two simple
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Figure 4: Extended Pole Model, 2D Case

models of body level dynamics that are widely used
for walking bipeds. They are the inverted pendulum
model and the center of gravity model. Both can be
represented visually by Figure 4.

As Latham (Latham-92) shows in the pendulum
model the height of the biped (in 2D, the y compo-
nent of the cartesian position) is fixed at a constant
value h. This produces the desired behavior of main-
taining a stable platform for carrying and balancing
objects for instance. The length of the supporting link
changes to accomodate the fixed height, as the biped
walks. This is accomplished by bending each leg in
turn as required.

Unlike a constant length pendulum, the dynamic
equations for a constant height pendulum are linear
(Kajita-92,Latham-92):

. g

E—qz= 0 (5)
where z is the horizontal position of the 2D biped. This
means there is a closed form solution (Latham-92) and
therefore there is a clearcut way to provide trajectories
to the leg controllers.

Zheng (Zheng-89) uses the 2D center of gravity
model. The height y of the mass of the pendulum can
change, as well as the horizontal component z. The no-
tion of decoupling the body center of mass from the dy-
namics of the legs was first developed by Miyazaki and
Arimoto (Miyazaki-80). The center of gravity body
model is

Ip + M[-yz][E§]" = -Mgz (6)
where I is the inertia of the body, M is its mass, and ¢
is gravitational acceleration. Zheng relates the desired
center of gravity trajectory to joint motions. His goal
is to supply the biped with the ability to recover from
perturbations (i.e. catch its balance). The controller
that is derived is based on a simplified joint level model
that ignores coriolis, centrifugal, and gravity terms.

Another interesting model that is receiving alot of
current attention is that of the central pattern gener-
ator (CPG). Bay and Hemami (Bay-87) study the use
of coupled van der Pol oscillators to generate body be-
haviors for biped robots (and also to model biological
systems). They use n oscillators, one for each joint,
given by

Z; — I‘c,-(p,-2 - fgz)f.' + gizfi =4 (7
i=1,...,n, where p; is an amplitude parameter, g; is
a frequency parameter and g¢; is an offset parameter.

£; is the result of a coupling equation with the states of
the other oscillators. For example, #; = z; — Ag122 -
As1z3 in the four-link biped scenario where each of the
four oscillators is coupled with 2 others, forming a ring
configuration. The oscillator parameters, u;, pi, ¢i, ¢i,
and coupling parameters, );; are tuned (in magnitude
and sign) to produce various body behaviors such as
Phase Shift Transition - trotting to galloping transitions
Amplitude Modification - changes muscle extension
Frequency Modification - faster or slower motions
Exclusions (decoupling of oscillators) -
to allow a joint to remain stationary
despite motions of neighboring joints;
e.g. swinging one leg freely while
the other remains stationary, in order to kick

The CPG model can be manipulated to generate
control signals for various walking and jumping maneu-
vers. The model is used by Bay and Hemami to directly
generate joint or leg trajectories, depending on the con-
figuration of the oscillators. It is also used by Miller
(Miller-94) to generate joint trajectories, given desired
step length, step interval, and actual foot forces.

No discussion of models of biped locomotors would
be complete without including Raibert’s models of
hopping robots. Raibert (Raibert-84) describes hop-
ping as a special case of running in which all legs give
support to the body at the same time. Most models
for walking assume rigid links. In Raibert’s hopping
model, there are two models used, one for flight and
one for stance. During flight, when no legs give sup-
port, the motion of the center of gravity of the body
is ballistic. During stance, when the legs provide sup-
port, the behavior is like the inverted pendulum, ac-
companied by spring-mass oscillation.

The frequency of oscillation is used to determine the
stance time interval during repetitive hopping. In prac-
tice, Raibert has constructed actual spring-mass robot
legs for his experiments. However, the same models
can be applied as body behavior models to multilink
robots whose legs can act as virtual spring-mass sys-
tems.

The spring-mass model is an oscillator with a natural
frequency

K
where K is the stiffness of the spring and M is the mass
of the body plus the part of the leg that lies above the
spring. This freqeuncy is used to determine the stance
time interval during repetitive hopping:

Ty = 5,: = x\/g. (9)

Finally, during flight the model is a gravity-mass oscil-
lator. Thus the full hopping cycle has period

=r\/-g+"§§{ (10)




where H is the hopping height measured at the foot,
and g is the acceleration of gravity.

The goals of most of the researchers developing these
models have involved control of the biped with the pur-
pose of walking, running, or hopping. It is beyond the
scope of this paper to present the methods of control
used. Methods are centered on linearization, computed
torque, and neglection of nonlinear terms. ANNs have
been used as well (Latham-92,Miller-94,Zheng-90). In
general some type of hierarchical control is necessary to
handle the matching of models at body and leg levels
with the actual model or simplified model that drives
the controllers at the joint level.

Qualitative Reasoning for Control

Qualitative  reasoning (QR) about  physi-
cal systems (Bobrow-84,deKleer-77,Forbus-84,Forbus-
88,Hayes-85,Kokar-87,Kuipers-86, Weld-90a) is an area
of Al that can aid robotic engineers in both modeling
physical systems in more abstract ways and in manip-
ulating these models. In some sense the goal of qual-
itative reasoning is to provide a language with which
to manipulate descriptions of physical systems. In an-
other sense, it is a way to both generalize and simplify
the description of a system so that the analysis of its
behavior is more tractable.

Most of the work of engineers in finding applications
for
qualitative reasoning has so far been in process mon-
itoring, fault detection, and design (Arkin-90,Dvorak-
89,Kokar-90,Machias-90,Mavrovouniotis-90). In order
to use it for control, feedback must be employed.

Several researchers are using QR for control.
Makarovic (Makarovic-91) has used a form of quali-
tative reasoning to control a 2 link inverted pendulum.
He first derives the dynamic equations, based on the
Lagrangian, and then simplifies them in a way that
parallels conventional control methods. He determines
which terms can be neglected and then finds the terms
with the most influence. These are used in control rules
that control the pendulum.

Lawton (Lawton-90) derives a spatial representation
for purposes of navigation and control of a mobile
robot. The representation has a qualitative level that
is topological in nature, providing a global structure
for navigation. The lower level is quantitative, based
on cartesian coordinate systems, and is used for local
computations in vision and low level control.

Forbus (Forbus-89) introduces the idea of integrat-
ing physics with actions taken by agents, resulting in
“action-augmented envisionments.” The actions are
events that can occur in the qualitative world. In qual-
itative control, not only would actions be introduced,
but the- decision making step (the controller) would
also become part of the qualitative reasoner. The use
of on-line feedback needs to be included in this work,
where feedback includes high-level information. A con-
troller must not only be able to determine its options

before choosing its control strategies, but must be able
to gather information while carrying out its tasks in
order to update its choice of strategies.

In order to introduce feedback control into qual-
itative reasoning, Gervasio and DeJong (Gervasio-
89) have used explanation-based learning techniques.
They develop “reactive operators” in a reactive plan-
ning system. Gervasio has further carried out this
work (Gervasio-90) by integrating classical and reac-
tive planning techniques that can be used for various
classes of control problems. '

DeJong (DeJong-90) also describes control from
the perspective of an Al planning problem, and uses
explanation-based learning techniques and qualitative
reasoning to develop a learning controller that can
monitor continuous quantities. This system is struc-
tured as a higher level system that reasons (and learns)
about qualitative proportionalities between quantities,
and is augmented by a low level, quantitative system
that makes the continuous values accessible and usable
as feedback. The low level system is based on linear
interpolation. This is in effect a hierarchical control
system.

What Now?

I am currently investigating the use of qualitative rea-
soning about physical systems at the body level of the
hierarchy for biped robot control. The first investiga-
tion may be to use CPG models within the qualitative
reasoning framework to make body level transitions.
When the parameters reach certain critical points the
biped will exhibit a transition to a different behavior.
These transitions can either be observed or can be con-
trolled. Using goals, such as kicking the refrigerator
door shut on the way into the living room, a QR based
planner will determine the appropriate transitions or
the appropriate parameter changes that will enable the
transitions.

QR may be used to switch between the body level
models as well. An inverted pendulum model may be
used for smooth walking. When a critical point in sen-
sor readings is reached, a transition to a CPG or a
hopping model may be made, say when a toy or a dog
is suddenly in the path.

QR will also be useful in the interaction of 2 or more
cooperating bipeds that are modelled by body level
models. They might be carrying a heavy box together
or even playing soccer.




Figure 5: Biped Robot Hardware

My goal in this workshop is to interact with other
researchers to determine how to use QR effectively at
this level. I would like to mateh models and bebaviors
such as

¢ Don’t stop now!

¢ Stop now!

o Kick that!

Pry up that rock with a toe
Rock back and forth

Jump up

Jump forward

e Jump back
o Jump to either side

e Crouch

and understand how to use QR to make transitions
and use high level feedback to recover from reactive
behaviors and resume the original biped goals.

A Hardware Biped Robot

Figure 5 is a picture of the biped robot that will
be used in the quantitative and qualitative control ex-
periments. While we have the motors and links con-
structed for a three dimensional biped, currently we

have only assembled the hardware for two dimensional -
frontal plane movement. Also shown in the picture are
the passive (non-motorized) arms that hold on to a
hand cart. We are using this to provide some balance
in the initial control and learning phases. It will also
constrain movement to the frontal plane (i.e. keep the
biped from tipping over sideways).

Acknowledgements

1 would like to acknowledge the engineering skills
of Hamid Benbrahim in building the biped. I also
acknowledge Tom Miller’s accomplishments in using
learning to control a biped robot and for providing
background information. Thanks to Steve Whitehead
for capturing the biped image and to Steve and John
Doleac for discussions. Also cheers to Oliver Selfridge
as always.

References

Arkin-90

Arkin, R. C. & Vachtsevanos, G., 1990, “Qualitative
Fault Propagation in Complex Systems,” in the Pro-
ceedings of The 29th IEEE Conference on Decision
and Control, December, Honolulu, HI.

Bay-87

Bay, J. S. & Hemami, H., Modeling of a Neural Pat-
tern Generator with Coupled Nonlinear Oscillators,
IEEE Transactions on Biomedical Engineering, Vol.
BME-34, No. 4, April 1987, pp. 297-306.

Benbrahim-92

Benbrahim, H., Doleac, J., Franklin, J., & Selfridge,
0., 1992, “Real-Time Learning: A Ball on a Beam,”
Proceedings of the 1992 International Joint Confer-
ence on Neural Networks, June, Baltimore, MD.

Bobrow-84

Bobrow, D. G., 1984, “Qualitative Reasoning About
Physical Systems: An Introduction,” Artificial Intel-
ligence, Vol. 24, No. 1-3, December 1984, pp. 1-5.

Caloud-87
Caloud, P., 1987, “Towards Continuous Process Su-
pervision,” Proceedings of the Tenth International
Joint Conference on Artificial Intelligence, Milan, pp.
1086-1089.

deKleer-77

de Kleer, J., 1977, “Multiple Representations of
Knowledge in a Mechanics Problem-Solver,” Proceed-
ings of the 5th International Joint Conference on Ar-
tifical Intelligence - 1977, Vol. 1, MIT, Cambridge,
MA., August 22-25, pp. 299-304.

DeJong-90

Delong, G., 1990, “A Machine Learning Approach to
Intelligent Adaptive Control,” in Proceedings of The
29th IEEE Conference on Decision and Conirol, De-
cember, Honolulu, HI.

Djaferis-87

Djaferis, T., Franklin, J., & Murah, B., 1987, “De-




velopment of Multivariate Feedback Control Methods
For Surface Tracing,” Proceedings of the Tenth IFAC
World Congress, Munich, West Germany, July.

Doyle-79
Doyle, J., 1979, “A Truth Maintenance System,” Ar-
tificial Intelligence, Vol. 12, pp. 231-272.

Dvorak-89

Dvorak, D., & Kuipers, B., 1989, “Model-Based Mon-
itoring of Dynamic Systems,” in Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, August 20-25, Detroit, MIL., pp. 1238-
1243.

Forbus-84
Forbus, K. D., 1984, “Qualitative Process Theory,”
Artificial Intelligence, Vol. 24, No. 1-3, December, pp.

85-168.

Forbus-88

Forbus, K. D., 1988, “Qualitative Physics: Past,
Present, and Future,” reappearing in Readings in
Qualitative Reasoning About Physical Systems, D. S.
Weld & J. de Kleer (eds.), 1990, Morgan Kaufmann,
San Mateo, CA.

Forbus-89

Forbus, K. D., 1989, “Introducing Actions into Quali-
tative Simulation,” Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence,
Vol. 2, August 20-25, Detroit, MI., pp. 1273-1278.

Franklin-92

Franklin, J. A. & White, D. A., 1992, “Artificial Neu-
ral Networks in Manufacturing and Process Control,”
in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaplive Approaches, White, D. A. & Sofge, D.
A., eds., Van Nostrand Reinhold, Florence, KY.

Franklin-92a

Franklin, J. A., 1992, “Qualitative Reinforcement
Learning Control,” Proceedings of the 31st IEEE
Conference on Decision and Control, December, Tus-
con, AZ.

Franklin-92b

Franklin, J. A., Smith, M. D., & Yun, J. C., 1992,
“Learning Channel Allocation Strategies in Real
Time,” Proceedings of the IEEE Vehicular Technol-
ogy Conference 1992, May, Denver, CO.

Franklin-90

Franklin, J. A., 1990, “What is Qualitative Reasoning
and Can We Use it for Control?” in Proceedings of
the 29th IEEE Conference on Decision and Control,
December, HI.

Franklin-89

Franklin, J. A., 1989, “Input Representation for Re-
finement Learning Control,” The Proceedings of the
IEEE International Symposium on Intelligent Con-
trol 1989, September, Albany, NY.

Franklin-88
Franklin, J. A., 1988, “Refinement of Robot Motor

Skills Through Reinforcement Learning,” The Pro-
ceedings of the 27th IEEE Conference on Decision
and Control, December, Austin, TX.

Franklin-88b

Franklin, J. A., 1988, Compliance and Learning:
Control Skills for a Robot Operating in an Uncer-
tain World, February, Ph.D. Dissertation, Electrical
and Computer Engineering Department, University
of Massachusetts, Amherst, MA.

Franklin-87

Franklin, J. A., 1987, “Learning Control in a Robotic
System,” October, in Proceedings of the 1987 IEEE
International Conference on Systems, Man, and Cy-
bernetics, Alexandria, VA.

Freund-82

Freund, E., Fast Nonlinear Control with Arbitrary
Pole-Placement for Industrial Robots and Manipula-
tors, International Journal of Robotics Research, Vol.
1, No. 1, Spring 1982.

Gervasio-89

Gervasio, M. T. & Delong, G., 1989, “Explanation-
Based Learning of Reactive Operators,” in Proceed-
ings of the Sizth International Workshop on Machine
Learning, June 26-28, Ithaca, NY, pp. 252-254.

Gervasio-90

Gervasio, M. T., “Using Qualitative Reasoning in
Proving Achievability,” in Proceedings of The 29th
IEEE Conference on Decision and Control Decem-
ber, Honolulu, HI.

Golliday-77

Golliday Jr., C. L. & Hemami, H., An Approach to
Analyzing Biped Locomotion Dynamics and Design-
ing Robot Locomotion Controls, IEEE Transactions
on Automatic Control, Vol. AC-22, No. 6, December
1977, pp. 963-972.

Gullapalli-94

Gullapalli, V., Franklin, J. A., & Benbrahim, H., “Ac-
quiring Robot Skills via Reinforcement Learning,”
IEEE Control Systems Magazine, February 1994,

Hayes-85

Hayes, P. J., 1985, “The Second Naive Physics Man-
ifesto,” reappearing in Readings in Qualitative Rea-
soning About Physical Systems, D. S. Weld & J. de
Kleer (eds.), 1990, Morgan Kaufmann, San Mateo,
CA.

Hemami-83

Hemami, H. & Camana, P., Nonlinear Feedback in
Simple Locomotion Systems, in Tutorial on Robotics,
Lee et al., eds., 1983, IEEE Computer Society Press,
Silver Spring, MD.

Kajita-92

Kajita, S., Yamaura, T., & Kobayashi, A., Dynamic
Walking Control of a Biped Robot Along a Poten-
tial Energy Conserving Orbit, IEEE Trensactions on
Robotics and Automation, Vol. 8, No. 4, August 1992,
pp- 431-438.




Kokar-87

Kokar, M. M., 1987, “Critical Hypersurfaces and the
Quantity Space,” in Proceedings of the Sirth Na-
tional Conference on Artificial Inielligence, July 13-
17, Seattle, WA., pp. 616-620.

Kokar-90

Kokar, M. M. & Reeves, J. J., 1990, “Qualitative
Monitoring of Time-Varying Physical Systems,” in
Proceedings of The 29th IEEE Conference on Deci-
sion and Conirol, December, Honolulu, HI.

Kuipers-86

Kuipers, B., 1986, “Qualitative Simulation,” reap-
pearing in Readings in Qualitative Reasoning About
Physical Systems, D. S. Weld & J. de Kleer (eds.),
1990, Morgan Kaufmann, San Mateo, CA.

Latham-92

Latham II, P. W., A Simulation Study of Bipedal
Walking Robotls: Modeling, Walking Algorithms,
and Neural Network Control, Ph.D. dissertation in
Engineering, 1992, University of New Hampshire,
Durham, NH.

Lawton-90

Lawton, D. T., 1990, “Qualitative Spatial Under-
standing and the Control of Mobile Robots,” in Pro-
ceedings of The 29th IEEE Conference on Decision
and Conirol, December, Honolulu, HI.

Machias-90

Machias, A. V., Souflis, J. L., & Papadia, B. C., 1990,
“Application of a Deep Level Knowledge Model to
Dynamic Behavior Analysis of Power Systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol.
20, No. 3, May/June.

Makarovic-91

Makarovic, A., A Qualitative Way of Solving the ‘Pole
Balancing Problem, Machine Intelligence 12, Hayes,
J. E., Michie, D., & Tyugu, E., eds., 1991, Clarendon
Press, Oxford, pp. 241-258.

Mavrovouniotis-90

Mavrovouniotis, M. & Stephanopoulos, G., “Formal
Order-of-Magnitude Reasoning in Process Engineer-
ing,” reappearing in Readings in Qualitative Reason-
ing About Physical Systems, D. S. Weld & J. de Kleer
(eds.), 1990, Morgan Kaufmann, San Mateo, Ca.
Miller-94

Miller I1I, W. T., Real-Time Neural Network Control
of a Biped Walking Robot, IEEE Control Systems
Magazine, February 1994.

Miura-84

Miura, H. & Shimoyama, I, Dynamic Walk of a
Biped, The International Journal of Robotics Re-
search, Vol. 3, No. 2, Summer 1984, pp. 60-74.
Miyazaki-80

Miyazaki, F. & Arimoto, S., A Control Theoretic
Study on Dynamic Biped Locomotion, ASME Jour-
nal of Dynamic Sylems, Measurement, and Control,

Vol. 102, pp. 233-239, 1980.

Paul-81

Paul, R., Robot Manipulators: Mathemalics, Pro-
gramming, and Control, 1981, MIT Press, Cambridge,
MA.

Raibert-84

Raibert, M. H., Hopping in Legged Systems - Mod-
eling and Simulation for the Two-Dimensional One-
Legged Case, IEEE Transactions on Systems, Man,
and Cybernetics, Vol. SMC-14, No. 3, May/June
1984, pp. 451-463.

Sutton-90

Sutton, R. S., 1990, “Integrated Architecture for
Learning, Planning, and Reacting Based on Approx-
imating Dynamic Programming,” in Proceedings of
The 1990 International Machine Learning Confer-
ence, July, Austin, TX.

Vukobratovic-83

Vukobratovié & Stokié, Is Dynamic Control Needed
in Robot Systems, and If So, to What Extent?, In-
ternational Journal of Robotics Research, Vol. 2, No.
2, pp- 18-34.

Weld-90a

Weld, D. S., & de Kleer, Johan (eds.), 1990, Read-
ings in Qualitative Reasoning About Physical Sys-
tems, Morgan Kaufmann, San Mateo, CA.

Weld-90b

Weld, D. S., & de Kleer, Johan (eds.), 1990, “Qual-
itative Physics, A Personal View,” in Readings in
Qualitative Reasoning About Physical Systems, Mor-
gan Kaufmann, San Mateo, CA.

Zheng-84

Zheng, Y-F. & Hemami, H., Impact effects of Biped
Contact with the Environment, IEEE Transaclions
on Systems, Man, and Cybernetics, Vol. SMC-14, No.
3, May/June 1984, pp. 437-443.

Zheng-89

Zheng, Y-F., “Acceleration Compensation for Biped
Robots to Reject External Disturbances,” IEEE
Transaclions on Systems, Man, and Cybernetics, Vol.
19, No. 1, Jan/Feb 1989, pp. 74-84.

Zheng-90

Zheng, Y-F., A Neural Gait Synthesizer for Au-
tonomous Biped Robots, IEEE International Work-
shop on Intelligent Robols and Systems, IROS ’90,
pp. 601-608.

Zheng-90a

Zheng, Y-F. & Shen, J., Gait Synthesis for the SD-2
Biped Robot to Climb Sloping Surface, JEEE Trans-
aclions on robotics and Auiomation, Vol. 6, No. 1,
February 1990.




