
Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

1 of 9 4/24/09 11:44 AM

Hooking game audio: Using Pd and
OSC for rapid DSP development

Andy Farnell

Date: 11 October 2007

Synopsis
In order to prototype game audio DSP you need to be able to hear the sound
design alongside the running game. In this example we will use the Open Sound
Control protocol to directly bind to the events in a very simple game. We will then
use OSC messages to parameterise some simple sounds.

Why use OSC?
Some games developers like to use a language called Lua because it is a very fast
embeddable scripting language with a small footprint that can be used as glue for
bindings or "hooks" between different pieces of game code. One reason is that it
interfaces nicely with C++ objects. Here we will not use Lua, because the
example is so trivial that we will make direct bindings to the game code. This is
possibly much more instructive. Instead we will directly use a flexible messaging
system known as OSC (Open Sound Control). This is very suitable for games for a
number of reasons. Firstly, like Lua it is extremely small and efficient. OSC is
really nothing more than a definition, a protocol for sending message data to
unique addresses over a socket connection. It uses a URL type address space, for
example we might define a sample replay unit called "Engine35" which exists
within the object "Truck3" and has some parameters like start, stop and speed.
To talk to this sound object we send messages of the form /Truck3/Engine35/Speed 100
which are routed to the correct object by the URL. Loose strings or floats following
the address string are taken as parameters. Secondly, it is designed precisely for
driving sound generation objects that are decoupled from controller code, so it has
the capacity to carry time-tagged messages that can be delivered with the correct
timing and order even if sent over TCP sockets. This means we can run a
dedicated DAW for synthesis and sample mixing on a completely different

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

2 of 9 4/24/09 11:44 AM

machine from the one on which the game graphics are run.

Choosing a game.
The game I picked for this example is Xinvaders by Johny Goldman. It is a small,
easily understood program that comes in a just a few C source files and will
compile fine on anything that can run X-Windows. For those of you who aren't old
fogeys, Space Invaders is the original 2D shoot-em-up game from the late 1970s
in which you have a movable base ship, some rocks to hide behind while wave
upon wave of enemy hordes suicidally attack your base. See this site
http://www.spaceinvaders.de/ for more background information. The original game
written by Toshihiro Nishikado for Taito, http://www.taito.co.jp/ had some very
recognisable sounds, not implemented in Goldmans code, which we can have fun
designing in Pd. In fact the simplicity and effectiveness of the Space Invader
sounds has been mentioned in studies of game music and sound. From
"Strategies for narrative and adaptive game scoring" by Axel Berndt and Knut
Hartmann (2007)...

"A repetitive stepwise descending four-tone sequence illustrates the
approaching hostile UFOs. The closer they come the more the increase in
speed and difficulty of the game. Likewise, the tempo of the four-tone
sequence accelerates and mediates an increasingly suspenseful
precipitance."

The game code takes about 30 seconds to compile on a typical machine so we can
easily start playing with the program and tweaking the OSC interface.

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

3 of 9 4/24/09 11:44 AM

Figure 1: Johny Goldmans "XInvaders"

Compiling the game source with OSC
Download the source package from here
http://www.ibiblio.org/pub/Linux/games/arcade/invaders/xinvaders-2.1.1.tar.gz
Unpack the archive with gunzip xinvaders-2.1.1.tar.gz; tar -xvf xinvaders-2.1.1.tar and
enter the directory created. Let's take a look at the code. After unpacking the
source archive there seems to be 7 C files, some header files and a bunch of
graphics bitmaps.

$ ls *.c
base.c main.c score.c shot.c spacers.c vaders.c widget.c

and the header files

$ ls *.h
acconfig.h config.h me.h patchlevel.h vaders.h

Type make and if all goes well you should be able to start the game by typing
./xinvaders in the current directory. Movement and shooting are both accomplished

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

4 of 9 4/24/09 11:44 AM

by the mouse. If you don't have a 3 button mouse you might want to tweak the
source to use the keyboard instead while doing this exercise.

$ make
$./xinvaders

Next we need to use the OSC library. First grab the OSC code. The one we will use
is liblo from Steve Harris and Nicholas Humfrey, which is an easy to use and
compact pure C implementation that doesn't have a few of the more
sophisticated OSC protocol trimmings. Download it from:
http://liblo.sourceforge.net/
Follow the installation instructions to put the library object on your system. Open
main.c from Xinvaders and add the following line after all the other includes. (On
my system liblo.h has installed to /usr/include/lo/lo.h)

add to main.c

#include "lo/lo.h"

The next two lines are added to function main() so that they are executed as soon
as the program is run. The first calls lo_address_new() to create an OSC socket on
port 7770. The first parameter is the host which defaults to localhost on
127.0.0.1 as a default, or when passed NULL. Then we send a test packet using
lo_send(), using our port handle t then an OSC address /foo/bar/ and finally our test
data which is three strings and a float. These have no meaning at the moment.
In reality we might send an initial message from the game to load a patch and
initialise the sound system,

add to function main() in main.c

int main(Cardinal argc, char **argv){
t = lo_address_new(NULL, "7770");
lo_send(t, "/foo/bar", "ssf", "create", "invaders", 1.0f);

One last thing before we can recompile and test the OSC connection, we must
make a change to the Makefile so that our new library is linked in. Locate the line
beginning with LIBS = and make the following changes.

modify the Makefile

LIBS = -lXaw -lXmu -lXt -lX11 -llo -L/usr/X11R6/lib -L /usr/local/lib/lo

Now we are ready to see if we can get an OSC packet from the game. A useful

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

5 of 9 4/24/09 11:44 AM

utility is a little program called dumpOSC that will display any received OSC messages
to the console. You can get it from here:
http://www.cnmat.berkeley.edu/OpenSoundControl/dumpOSC.html

Run dumpOSC in the background and then start the Xinvaders game. You should see
a message sent from game on startup. Alternatively use netcat with verbose,
UDP and listen flags, netcat -ul localhost -p 7770 & - but be mindful that the last float
in our message will not display correctly as an ascii char.

dumpOSC 7770 &

dumpOSC version 0.2 (6/18/97 Matt Wright). Unix/UDP Port 7770
Copyright (c) 1992,96,97,98,99,2000,01,02,03 Regents of the University of
California.

$./xinvaders
/foo/bar "create" "invaders" 1.000000

Adding OSC sound hooks
Now we know the game works and we have OSC connectivity, let's begin adding
the sound hooks. To save some time looking through all the source code lets
search it for likely functions. What we are looking for is conditions where
something is "hit", "explodes" or other "events". Eventually we are going to have
to read through all the files but let's begin with a quick search on a likely term.

grep -in destroy *.c

base.c:25:Boolean basedestroyed;
base.c:100: basedestroyed = TRUE;
base.c:141:void DestroyBase()
base.c:145: basedestroyed = TRUE;
base.c:158: if(!basedestroyed && BaseNearPoint(base, x, y)) {
base.c:159: DestroyBase();
base.c:187: basedestroyed = FALSE;
base.c:202: if (basedestroyed) {
base.c:218: basedestroyed = FALSE;
shot.c:69:static void DestroyShot(i)
shot.c:78:static void DestroyVshot(i)
shot.c:108: DestroyShot(i);
shot.c:132: DestroyShot(i);
shot.c:163: DestroyVshot(i);
spacers.c:70:static void DestroySpacer()
spacers.c:91: DestroySpacer();
vaders.c:106:static void DestroyVader(vader)
vaders.c:141: DestroyVader(vader);
widget.c:288:static void Destroy() {}

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

6 of 9 4/24/09 11:44 AM

Well, that is very promising. Right away we find a number of interesting functions
that will probably lead us to points in the code where we can send an OSC
message to create a sound. I will list these in a moment but since they are in
other files than main.c you need to add the following line to each of the other
source files so that our OSC port handle is visible.

In the other source files declare the handle

30 extern lo_address t; /* OSC port address for sounds */

Now we will find one of the events for which we wish to add a sound. In the
sourcefile vaders.c we discover a function called when an enemy is destroyed. That
seems like a good place to add an explosion effect. Here is the complete function
listing. Notice our new line of code is added at the bottom, just after the explosion
graphics are painted. The message destination is /game/invaders and "sf",
"invader-destroyed" is just a label meaning sound-function for the exploding
enemy ship. We will define the meanings of these fields later when we use them,
for example we might use the float part of the message to be the sound effect
volume or intensity.

Exploding enemy

static void DestroyVader(vader)
Vader vader;
{
PaintVader(vader, backgc);

score = vader->value;+
PaintScore();
numvaders--;
vaderwait /= 2;
vader->alive = FALSE;
vader->exploded = TRUE;
PaintExplodedVader(vader, vader->gc);
lo_send(t, "/game/invaders", "sf", "invader-destroyed", 1.0f);
}

Now, every time a enemy is destroyed we will send a message through OSC to
our sound development platform. You may use ReaktorTM from Native
Instruments or Max/MSPTM from Cycling74 or Puredata. We will use Pd because it
is the most flexible of the three environments. Before we move on to designing
the sounds add messages at or near these points in the source files. The call to
send the sound message will usually be the last line in the relevant function.

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

7 of 9 4/24/09 11:44 AM

Event bindings
Line number In file Sound effect
148 base.c base-destroyed
295 base.c building-hit
125 vaders.c invader-destroyed
133 shot.c shot-hit-shot
181 shot.c add-shot
197 shot.c add-vader-shot

Creating sound effects
Start Puredata on the same machine as you are running the game, we will use
localhost as the destination for all these experiments. Begin a fresh patch and add
a object. This will pick up the OSC messages for us. If you get a problem
creating this object check that the port 7770 isn't still in use with lsof | grep 7770.
Did you remember to kill the dumpOSC command? Now we will connect the

 object to a in order to filter out the messages for each sound
effect. If a message matches it will appear at the lefthand outlet, remaining
messages will flow through to the rightmost outlet. So, by chaining together a
cascade we can route all the messages to individual sub-patches like this:

Figure 2: Routing messages

All we have to do now is work on the sound effects. Start the game running and
add a subpatch for the weapon sound as below.

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

8 of 9 4/24/09 11:44 AM

Figure 3: Sound effects for three events

Note how the flexibility of this approach is now showing through, we can pause
the game and work on sound design then return immediately to the game
without recompiling anything, or having to leave and return to any environment.
In fact we can work on the sound design while the game is playing. Further
suggestions are given below for the enemy laser sound and the exploding
building. Note that these are deliberately designed to sound a bit crummy and
"8-bit", realistic sounds are not what we desire for a 70s arcade game. We will
not delve into the synthesis details too deeply here, plenty of information to
understand this is available elsewhere on http://obiwannabe.co.uk/. Enemy shots use
use FM to give a richer wobbly effect. For building and enemy explosions a burst
of swept noise is used. Tune the filter to sweep over the low ranges between
2000Hz and 100Hz and add plenty of clipping distortion for an old style arcade
game explosion.

About this document ...
Hooking game audio: Using Pd and OSC for rapid DSP development

This document was generated using the LaTeX2HTML translator Version 2002-2-1
(1.70)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning
Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department,
Macquarie University, Sydney.

The command line arguments were:

Hooking game audio: Using Pd and OSC for rapid DSP development http://www.obiwannabe.co.uk/tutorials/gamedev/OSC/oschooks.html

9 of 9 4/24/09 11:44 AM

latex2html -split 0 -local_icons hooking.tex

The translation was initiated by root on 2007-10-11

Andy Farnell
http://obiwannabe.co.uk

