
An Introduction to Quantum Computing for Non-Physicists

ELEANOR RIEFFEL
FX Palo Alto Laboratory

AND
WOLFGANG POLAK

Richard Feynman’s observation that certain quantum mechanical effects cannot be
simulated efficiently on a computer led to speculation that computation in general could
be done more efficiently if it used these quantum effects. This speculation proved
justified when Peter Shor described a polynomial time quantum algorithm for factoring
integers.

In quantum systems, the computational space increases exponentially with the size
of the system, which enables exponential parallelism. This parallelism could lead to
exponentially faster quantum algorithms than possible classically. The catch is that
accessing the results, which requires measurement, proves tricky and requires new
nontraditional programming techniques.

The aim of this paper is to guide computer scientists through the barriers that
separate quantum computing from conventional computing. We introduce basic
principles of quantum mechanics to explain where the power of quantum computers
comes from and why it is difficult to harness. We describe quantum cryptography,
teleportation, and dense coding. Various approaches to exploiting the power of quantum
parallelism are explained. We conclude with a discussion of quantum error correction.

Categories and Subject Descriptors: A.1 [Introductory and Survey]

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Quantum computing, complexity, parallelism

1. INTRODUCTION

Richard Feynman observed in the early
1980s [Feynman 1982] that certain quan-
tum mechanical effects cannot be simu-
lated efficiently on a classical computer.
This observation led to speculation that
perhaps computation in general could be
done more efficiently if it made use of these
quantum effects. But building quantum
computers, computational machines that
use such quantum effects, proved tricky,

Authors’ address: E. Rieffel, FX Palo Alto Laboratory, 3400 Hillview Av., Palo Alto, CA 94304; W. Polak,
Consultant.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works, requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c©2001 ACM 0360-0300/01/0900-0000 $5.00

and as no one was sure how to use the
quantum effects to speed up computation,
the field developed slowly. It wasn’t until
1994, when Peter Shor surprised the world
by describing a polynomial time quan-
tum algorithm for factoring integers [Shor
1994; 1997], that the field of quantum
computing came into its own. This discov-
ery prompted a flurry of activity among
experimentalists trying to build quan-
tum computers and theoreticians try-
ing to find other quantum algorithms.

ACM Computing Surveys, Vol. 32, No. 3, September 2000, pp. 300–335.

Introduction to Quantum Computing 301

Additional interest in the subject has been
created by the invention of quantum key
distribution and, more recently, popular
press accounts of experimental successes
in quantum teleportation and the demon-
stration of a 3-bit quantum computer.

The aim of this paper is to guide com-
puter scientists and other nonphysicists
through the conceptual and notational
barriers that separate quantum comput-
ing from conventional computing and to
acquaint them with this new and excit-
ing field. It is important for the computer
science community to understand these
new developments since they may radi-
cally change the way we have to think
about computation, programming, and
complexity.

Classically, the time it takes to do cer-
tain computations can be decreased by
using parallel processors. To achieve an
exponential decrease in time requires an
exponential increase in the number of
processors, and hence an exponential in-
crease in the amount of physical space
needed. However, in quantum systems the
amount of parallelism increases exponen-
tially with the size of the system. Thus,
an exponential increase in parallelism re-
quires only a linear increase in the amount
of physical space needed. This effect is
called quantum parallelism [Deutsch and
Jozsa 1992].

There is a catch, and a big catch at
that. While a quantum system can per-
form massive parallel computation, access
to the results of the computation is re-
stricted. Accessing the results is equiva-
lent to making a measurement, which dis-
turbs the quantum state. This problem
makes the situation, on the face of it, seem
even worse than the classical situation; we
can only read the result of one parallel
thread, and because measurement is prob-
abilistic, we cannot even choose which one
we get.

But in the past few years, various peo-
ple have found clever ways of finessing
the measurement problem to exploit the
power of quantum parallelism. This sort
of manipulation has no classical analog
and requires nontraditional programming
techniques. One technique manipulates

the quantum state so that a common
property of all of the output values such
as the symmetry or period of a function
can be read off. This technique is used
in Shor’s factorization algorithm. Another
technique transforms the quantum state
to increase the likelihood that output of
interest will be read. Grover’s search algo-
rithm makes use of such an amplification
technique. This paper describes quantum
parallelism in detail, and the techniques
currently known for harnessing its power.

Section 2, following this introduction,
explains of the basic concepts of quan-
tum mechanics that are important for
quantum computation. This section can-
not give a comprehensive view of quan-
tum mechanics. Our aim is to provide the
reader with tools in the form of mathemat-
ics and notation with which to work with
the quantum mechanics involved in quan-
tum computation. We hope that this paper
will equip readers well enough that they
can freely explore the theoretical realm of
quantum computing.

Section 3 defines the quantum bit, or
qubit. Unlike classical bits, a quantum bit
can be put in a superposition state that en-
codes both 0 and 1. There is no good classi-
cal explanation of superpositions: a quan-
tum bit representing 0 and 1 can neither
be viewed as “between” 0 and 1 nor can
it be viewed as a hidden unknown state
that represents either 0 or 1 with a certain
probability. Even single quantum bits en-
able interesting applications. We describe
the use of a single quantum bit for secure
key distribution.

But the real power of quantum compu-
tation derives from the exponential state
spaces of multiple quantum bits: just as a
single qubit can be in a superposition of
0 and 1, a register of n qubits can be in
a superposition of all 2n possible values.
The “extra” states that have no classical
analog and lead to the exponential size of
the quantum state space are the entangled
states, like the state leading to the famous
EPR1 paradox (see Section 3.4).

We discuss the two types of opera-
tions a quantum system can undergo:

1 EPR = Einstein, Podolsky, and Rosen

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

302 E. Rieffel and W. Polak

measurement and quantum state trans-
formations. Most quantum algorithms in-
volve a sequence of quantum state trans-
formations followed by a measurement.
For classical computers there are sets
of gates that are universal in the sense
that any classical computation can be per-
formed using a sequence of these gates.
Similarly, there are sets of primitive quan-
tum state transformations, called quan-
tum gates, that are universal for quantum
computation. Given enough quantum bits,
it is possible to construct a universal quan-
tum Turing machine.

Quantum physics puts restrictions on
the types of transformations that can be
done. In particular, all quantum state
transformations, and therefore all quan-
tum gates and all quantum computations,
must be reversible. Yet all classical algo-
rithms can be made reversible and can
be computed on a quantum computer in
comparable time. Some common quantum
gates are defined in Section 4.

Two applications combining quantum
gates and entangled states are described
in Section 4.2: teleportation and dense
coding. Teleportation is the transfer of a
quantum state from one place to another
through classical channels. That telepor-
tation is possible is surprising, since quan-
tum mechanics tells us that it is not pos-
sible to clone quantum states or even
measure them without disturbing the
state. Thus, it is not obvious what informa-
tion could be sent through classical chan-
nels that could possibly enable the recon-
struction of an unknown quantum state
at the other end. Dense coding, a dual to
teleportation, uses a single quantum bit to
transmit two bits of classical information.
Both teleportation and dense coding rely
on the entangled states described in the
EPR experiment.

It is only in Section 5 that we see
where an exponential speed-up over clas-
sical computers might come from. The in-
put to a quantum computation can be put
in a superposition state that encodes all
possible input values. Performing the com-
putation on this initial state will result in
superposition of all of the corresponding
output values. Thus, in the same time it

takes to compute the output for a single in-
put state on a classical computer, a quan-
tum computer can compute the values for
all input states. This process is known as
quantum parallelism. However, measur-
ing the output states will randomly yield
only one of the values in the superposition,
and at the same time destroy all of the
other results of the computation. Section 5
describes this situation in detail. Sections
6 and 7 describe techniques for taking ad-
vantage of quantum parallelism inspite of
the severe constraints imposed by quan-
tum mechanics on what can be measured.

Section 6 describes the details of Shor’s
polynomial time factoring algorithm. The
fastest known classical factoring algo-
rithm requires exponential time, and it is
generally believed that there is no classi-
cal polynomial time factoring algorithm.
Shor’s is a beautiful algorithm that takes
advantage of quantum parallelism by us-
ing a quantum analog of the Fourier trans-
form.

Lov Grover developed a technique for
searching an unstructured list of n items
in O(

√
n) steps on a quantum computer.

Classical computers can do no better than
O(n), so unstructured search on a quan-
tum computer is provably more efficient
than search on a classical computer. How-
ever, the speed-up is only polynomial, not
exponential, and it has been shown that
Grover’s algorithm is optimal for quan-
tum computers. It seems likely that search
algorithms that could take advantage of
some problem structure could do better.
Tad Hogg, among others, has explored
such possibilities. We describe various
quantum search techniques in Section 7.

It is as yet unknown whether the power
of quantum parallelism can be harnessed
for a wide variety of applications. One tan-
talizing open question is whether quan-
tum computers can solve NP-complete
problems in polynomial time.

Perhaps the biggest open question is
whether useful quantum computers can
be built. There are a number of propos-
als for building quantum computers us-
ing ion traps, nuclear magnetic resonance
(NMR), and optical and solid-state tech-
niques. All of the current proposals have

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 303

scaling problems, so a breakthrough will
be needed to go beyond tens of qubits
to hundreds of qubits. While both optical
and solid-state techniques show promise,
NMR and ion trap technologies are the
most advanced so far.

In an ion trap quantum computer [Circ
and Zoller 1995; Steane 1996] a linear se-
quence of ions representing the qubits are
confined by electric fields. Lasers are di-
rected at individual ions to perform single-
bit quantum gates. Two-bit operations are
realized by using a laser on one qubit to
create an impulse that ripples through a
chain of ions to the second qubit, where
another laser pulse stops the rippling
and performs the 2-bit operation. The ap-
proach requires that the ions be kept in
extreme vacuum and at extremely low
temperatures.

The NMR approach has the advantage
that it will work at room temperature and
that NMR technology in general is already
fairly advanced. The idea is to use macro-
scopic amounts of matter and encode a
quantum bit in the average spin state of
a large number of nuclei. The spin states
can be manipulated by magnetic fields,
and the average spin state can be mea-
sured with NMR techniques. The main
problem with the technique is that it
doesn’t scale well; the measured signal
scales as 1/2n with the number of qubits
n. However, a recent proposal [Schulman
and Vazirani 1998] has been made that
may overcome this problem. NMR com-
puters with three qubits have been built
successfully [Cory et al. 1998; Gershenfeld
and Chuang 1997; Laflamme et al. 1997;
Vandersypen et al. 1999]. This paper will
not discuss further the physical and en-
gineering problems of building quantum
computers.

The greatest problem for building quan-
tum computers is decoherence, the distor-
tion of the quantum state due to interac-
tion with the environment. For some time
it was feared that quantum computers
could not be built because it would be im-
possible to isolate them sufficiently from
the external environment. The break-
through came from the algorithmic rather
than the physical side, through the in-

vention of quantum error correction tech-
niques. Initially people thought quantum
error correction might be impossible be-
cause of the impossibility of reliably copy-
ing unknown quantum states, but it turns
out that it is possible to design quantum
error correcting codes that detect certain
kinds of errors and enable the reconstruc-
tion of the exact error-free quantum state.
Quantum error correction is discussed in
Section 8.

Appendices provide background infor-
mation on tensor products and continued
fractions.

2. QUANTUM MECHANICS

Quantum mechanical phenomena are dif-
ficult to understand, since most of our
everyday experiences are not applicable.
This paper cannot provide a deep un-
derstanding of quantum mechanics (see
Feynman et al. [1965], Liboff [1997], and
Greenstein and Zajonc [1997] for expo-
sitions of quantum mechanics). Instead,
we will give some feeling as to the na-
ture of quantum mechanics and some of
the mathematical formalisms needed to
work with quantum mechanics to the ex-
tent needed for quantum computing.

Quantum mechanics is a theory in the
mathematical sense: it is governed by a set
of axioms. The consequences of the axioms
describe the behavior of quantum systems.
The axioms lead to several apparent para-
doxes: in the Compton effect it appears as
if an action precedes its cause; the EPR
experiment makes it appear as if action
over a distance faster than the speed of
light is possible. We will discuss the EPR
experiment in detail in Section 3.4. Ver-
ification of most predictions is indirect,
and requires careful experimental design
and specialized equipment. We will begin,
however, with an experiment that requires
only readily available equipment and that
will illustrate some of the key aspects of
quantum mechanics needed for quantum
computation.

2.1. Photon Polarization

Photons are the only particles that we
can observe directly. The following simple

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

304 E. Rieffel and W. Polak

experiment can be performed with mini-
mal equipment: a strong light source, such
as a laser pointer, and three polaroids
(polarization filters), which can be picked
up at any camera supply store. The ex-
periment demonstrates some of the prin-
ciples of quantum mechanics through pho-
tons and their polarization.

2.1.1 The Experiment. A beam of light
shines on a projection screen. Filters A,
B, and C are polarized horizontally, at
45◦, and vertically, respectively, and can be
placed so as to intersect the beam of light.

First, insert filter A. Assuming the in-
coming light is randomly polarized, the
intensity of the output will have half of
the intensity of the incoming light. The
outgoing photons are now all horizontally
polarized.

The function of filter A cannot be ex-
plained as a “sieve” that only lets those
photons pass that happen to be already
horizontally polarized. If that were the
case, few of the randomly polarized incom-
ing electrons would be horizontally polar-
ized, so we would expect a much larger at-
tenuation of the light as it passes through
the filter.

Next, when filter C is inserted, the in-
tensity of the output drops to zero. None
of the horizontally polarized photons can
pass through the vertical filter. A sieve
model could explain this behavior.

Finally, after filter B is inserted between
A and C, a small amount of light will be

visible on the screen, exactly one eighth of
the original amount of light.

Here we have a nonintuitive effect. Classi-
cal experience suggests that adding a filter
should only be able to decrease the num-
ber of photons getting through. How can it
increase it?

2.1.2 The Explanation. A photon’s polariza-
tion state can be modeled by a unit vector
pointing in the appropriate direction. Any
arbitrary polarization can be expressed
as a linear combination a|↑〉 + b|→〉 of the
two basis vectors2 |→〉 (horizontal polar-
ization) and |↑〉 (vertical polarization).

Since we are only interested in the di-
rection of the polarization (the notion of
“magnitude” is not meaningful), the state
vector will be a unit vector (i.e., |a|2+|b|2 =
1). In general, the polarization of a pho-
ton can be expressed as a|↑〉+b|→〉 where
a and b are complex numbers3 such that
|a|2 + |b|2 = 1. Note, the choice of basis
for this representation is completely arbi-
trary: any two orthogonal unit vectors will
do (e.g., {|↖〉, |↗〉}).

The measurement postulate of quantum
mechanics states that any device measur-
ing a two-dimensional system has an as-
sociated orthonormal basis with respect to
which the quantum measurement takes
place. Measurement of a state transforms
the state into one of the measuring de-
vice’s associated basis vectors. The prob-
ability that the state is measured as ba-
sis vector |u〉 is the square of the norm
of the amplitude of the component of the
original state in the direction of the ba-
sis vector |u〉. For example, given a device

2 The notation |→〉 is explained in Section 2.2.
3 Imaginary coefficients correspond to circular
polarization.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 305

Fig. 1. Measurement is a projection onto
the basis.

for measuring the polarization of photons
with associated basis {|↑〉, |→〉}, the state
|ψ〉 = a|↑〉 + b|→〉 is measured as |↑〉 with
probability |a|2 and as |→〉 with probabil-
ity |b|2 (see Figure 1). Note that different
measuring devices will have different as-
sociated bases, and measurements using
these devices will have different outcomes.
As measurements are always made with
respect to an orthonormal basis, through-
out the rest of this paper all bases will be
assumed to be orthonormal.

Furthermore, measurement of the
quantum state will change the state to
the result of the measurement. That is, if
measurement of |ψ〉 = a|↑〉 + b|→〉 results
in |↑〉, then the state ψ changes to |↑〉
and a second measurement with respect
to the same basis will return |↑〉 with
probability 1. Thus, unless the original
state happened to be one of the basis
vectors, measurement will change that
state, and it is not possible to determine
what the original state was.

Quantum mechanics can explain the po-
larization experiment as follows. A po-
laroid measures the quantum state of pho-
tons with respect to the basis consisting
of the vector corresponding to its polar-
ization together with a vector orthogonal
to its polarization. The photons that, after
being measured by the filter, match the fil-
ter’s polarization are let through. The oth-
ers are reflected and now have a polariza-
tion perpendicular to that of the filter. For

example, filter A measures the photon po-
larization with respect to the basis vector
|→〉, corresponding to its polarization. The
photons that pass through filter A all have
polarization |→〉. Those that are reflected
by the filter all have polarization |↑〉.

Assuming that the light source produces
photons with random polarization, filter
A will measure 50% of all photons as
horizontally polarized. These photons will
pass through the filter and their state will
be |→〉. Filter C will measure these pho-
tons with respect to |↑〉. But the state
|→〉 = 0|↑〉 + 1|→〉 will be projected onto
|↑〉 with probability 0, and no photons will
pass filter C.

Finally, filter B measures the quantum
state with respect to the basis

{
1√
2

(|↑〉 + |→〉), 1√
2

(|↑〉 − |→〉)
}

which we write as {|↗〉, |↖〉}. Note that
|→〉 = 1√

2
(|↗〉 − |↖〉) and |↑〉 = 1√

2
(|↗〉 +

|↖〉). Those photons that are measured as
|↗〉 pass through the filter. Photons pass-
ing through A with state |→〉 will be mea-
sured by B as |↗〉 with probability 1/2,
and so 50% of the photons passing through
A will pass through B and be in state |↗〉.
As before, these photons will be measured
by filter C as |↑〉 with probability 1/2. Thus
only one eighth of the original photons
manage to pass through the sequence of
filters A, B, and C.

2.2. State Spaces and Bra/Ket Notation

The state space of a quantum system, con-
sisting of the positions, momentums, po-
larizations, spins, and so on of the vari-
ous particles, is modeled by a Hilbert space
of wave functions. We will not look at the
details of these wave functions. For quan-
tum computing we need only deal with fi-
nite quantum systems and it suffices to
consider finite dimensional complex vec-
tor spaces with an inner product that are
spanned by abstract wave functions such
as |→〉.

Quantum state spaces and the tranfor-
mations acting on them can be described

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

306 E. Rieffel and W. Polak

in terms of vectors and matrices or in
the more compact bra/ket notation in-
vented by Dirac [1958]. Kets like |x〉 de-
note column vectors and are typically used
to describe quantum states. The match-
ing bra, 〈x|, denotes the conjugate trans-
pose of |x〉. For example, the orthonor-
mal basis {|0〉, |1〉} can be expressed as
{(1, 0)T , (0, 1)T }. Any complex linear com-
bination of |0〉 and |1〉, a|0〉 + b|1〉, can be
written (a, b)T . Note that the choice of the
order of the basis vectors is arbitrary. For
example, representing |0〉 as (0, 1)T and |1〉
as (1, 0)T would be fine as long as this is
done consistently.

Combining 〈x| and | y〉 as in 〈x|| y〉, also
written as 〈x| y〉, denotes the inner prod-
uct of the two vectors. For instance, since
|0〉 is a unit vector we have 〈0|0〉 = 1 and
since |0〉 and |1〉 are orthogonal we have
〈0|1〉 = 0.

The notation |x〉〈 y | is the outer product
of |x〉 and 〈 y |. For example, |0〉〈1| is the
transformation that maps |1〉 to |0〉 and |0〉
to (0, 0)T , since

|0〉〈1||1〉 = |0〉〈1|1〉 = |0〉

|0〉〈1||0〉 = |0〉〈1|0〉 = 0|0〉 =
(

0
0

)
.

Equivalently, |0〉〈1| can be written in ma-
trix form, where |0〉 = (1, 0)T , 〈0| = (1, 0),
|1〉 = (0, 1)T , and 〈1| = (0, 1). Then

|0〉〈1| =
(

1
0

)
(0, 1) =

(
0 1
0 0

)
.

This notation gives us a convenient way
of specifying transformations on quantum
states in terms of what happens to the ba-
sis vectors (see Section 4). For example,
the transformation that exchanges |0〉 and
|1〉 is given by the matrix

X = |0〉〈1| + |1〉〈0|.

In this paper we prefer the slightly more
intuitive notation

X : |0〉 → |1〉
|1〉 → |0〉,

which explicitly specifies the result of a
transformation on the basis vectors.

3. QUANTUM BITS

A quantum bit, or qubit, is a unit vector
in a two-dimensional complex vector space
for which a particular basis, denoted by
{|0〉, |1〉}, has been fixed. The orthonormal
basis |0〉 and |1〉 may correspond to the |↑〉
and |→〉 polarizations of a photon respec-
tively, or to the polarizations |↗〉 and |↖〉.
Or |0〉 and |1〉 could correspond to the spin-
up and spin-down states of an electron.
When talking about qubits, and quantum
computations in general, a fixed basis with
respect to which all statements are made
has been chosen in advance. In particular,
unless otherwise specified, all measure-
ments will be made with respect to the
standard basis for quantum computation,
{|0〉, |1〉}.

For the purposes of quantum computa-
tion, the basis states |0〉 and |1〉 are taken
to represent the classical bit values 0 and 1
respectively. Unlike classical bits however,
qubits can be in a superposition of |0〉 and
|1〉 such as a|0〉 + b|1〉, where a and b are
complex numbers such that |a|2 +|b|2 = 1.
Just as in the photon polarization case, if
such a superposition is measured with re-
spect to the basis {|0〉, |1〉}, the probability
that the measured value is |0〉 is |a|2 and
the probability that the measured value is
|1〉 is |b|2.

Even though a quantum bit can be put
in infinitely many superposition states, it
is only possible to extract a single classi-
cal bit’s worth of information from a sin-
gle quantum bit. The reason that no more
information can be gained from a qubit
than in a classical bit is that informa-
tion can only be obtained by measurement.
When a qubit is measured, the measure-
ment changes the state to one of the basis
states in the way seen in the photon po-
larization experiment. As every measure-
ment can result in only one of two states,
one of the basis vectors associated to the
given measuring device, so, just as in the
classical case, there are only two possi-
ble results. As measurement changes the
state, one cannot measure the state of a

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 307

qubit in two different bases. Furthermore,
as we shall see in Section 4.1.2, quantum
states cannot be cloned, so it is not possible
to measure a qubit in two ways, even indi-
rectly by, say, copying the qubit and mea-
suring the copy in a different basis from
the original.

3.1. Quantum Key Distribution

Sequences of single qubits can be used to
transmit private keys on insecure chan-
nels. In 1984 Bennett and Brassard de-
scribed the first quantum key distribu-
tion scheme [Bennett and Brassard 1987;
Bennett et al. 1992]. Classically, public key
encryption techniques (e.g., RSA) are used
for key distribution.

Consider the situation in which Alice
and Bob want to agree on a secret key
so that they can communicate privately.
They are connected by an ordinary bidirec-
tional open channel and a unidirectional
quantum channel, both of which can be ob-
served by Eve, who wishes to eavesdrop on
their conversation. This situation is illus-
trated in the figure that follows. The quan-
tum channel allows Alice to send individ-
ual particles (e.g., photons) to Bob who can
measure their quantum state. Eve can at-
tempt to measure the state of these parti-
cles and can resend the particles to Bob.

To begin the process of establishing a
secret key, Alice sends a sequence of bits to
Bob by encoding each bit in the quantum
state of a photon as follows. For each bit,
Alice randomly uses one of the following
two bases for encoding each bit:

0 → |↑〉
1 → |→〉

or
0 → |↖〉
1 → |↗〉.

Bob measures the state of the photons he
receives by randomly picking either ba-
sis. After the bits have been transmitted,
Bob and Alice communicate the basis they
used for encoding and decoding of each bit
over the open channel. With this informa-
tion both can determine which bits have
been transmitted correctly, by identifying
those bits for which the sending and re-
ceiving bases agree. They will use these
bits as the key and discard all the others.
On average, Alice and Bob will agree on
50% of all bits transmitted.

Suppose that Eve measures the state
of the photons transmitted by Alice and
re-sends new photons with the measured
state. In this process she will use the
wrong basis approximately 50% of the
time, in which case she will re-send the bit
with the wrong basis. So when Bob mea-
sures a re-sent qubit with the correct ba-
sis, there will be a 25% probability that
he measures the wrong value. Thus any
eavesdropper on the quantum channel is
bound to introduce a high error rate that
Alice and Bob can detect by communicat-
ing a sufficient number of parity bits of
their keys over the open channel. So, not
only is it likely that Eve’s version of the
key is 25% incorrect, but the fact that
someone is eavesdropping will be appar-
ent to Alice and Bob.

Other techniques for exploiting quan-
tum effects for key distribution have been
proposed. See, for example, Ekert et al.
[1992], Bennett [1992], and Lo and Chau
[1999]. But none of the quantum key dis-
tribution techniques are substitutes for
public key encryption schemes. Attacks
by eavesdroppers other than the one de-
scribed here are possible. Security against
all such schemes is discussed in both
Mayers [1998] and Lo and Chau [1999].

Quantum key distribution has been re-
alized over a distance of 24 km using
standard fiber optical cables [Hughes et al.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

308 E. Rieffel and W. Polak

1997] and over 0.5 km through the atmo-
sphere [Hughes et al. 1999].

3.2. Multiple Qubits

Imagine a macroscopic physical object
breaking apart and multiple pieces flying
off in different directions. The state of this
system can be described completely by de-
scribing the state of each of its compo-
nent pieces separately. A surprising and
unintuitive aspect of the state space of
an n-particle quantum system is that the
state of the system cannot always be de-
scribed in terms of the state of its compo-
nent pieces. It is when examining systems
of more than one qubit that one first gets a
glimpse of where the computational power
of quantum computers could come from.

As we saw, the state of a qubit
can be represented by a vector in the
two-dimensional complex vector space
spanned by |0〉 and |1〉. In classical physics,
the possible states of a system of n par-
ticles, whose individual states can be de-
scribed by a vector in a two-dimensional
vector space, form a vector space of 2n di-
mensions. However, in a quantum system
the resulting state space is much larger; a
system of n qubits has a state space of 2n

dimensions.4 It is this exponential growth
of the state space with the number of par-
ticles that suggests a possible exponential
speed-up of computation on quantum com-
puters over classical computers.

Individual state spaces of n particles
combine classically through the cartesian
product. Quantum states, however, com-
bine through the tensor product. Details
on properties of tensor products and their
expression in terms of vectors and matri-
ces are given in Appendix A. Let us look
briefly at distinctions between the carte-
sian product and the tensor product that
will be crucial to understanding quantum
computation.

Let V and W be 2 two-dimensional com-
plex vector spaces with bases {v1, v2} and

4 Actually, as we shall see, the state space is the set
of normalized vectors in this 2n dimensional space,
just as the state a|0〉 + b|1〉 of a qubit is normalized
so that |a|2 + |b|2 = 1.

{w1, w2} respectively. The cartesian prod-
uct of these two spaces can take as its
basis the union of the bases of its com-
ponent spaces {v1, v2, w1, w2}. Note that
the order of the basis was chosen arbi-
trarily. In particular, the dimension of the
state space of multiple classical particles
grows linearly with the number of parti-
cles, since dim(X ×Y) = dim(X)+dim(Y).
The tensor product of V and W has ba-
sis {v1 ⊗ w1, v1 ⊗ w2, v2 ⊗ w1, v2 ⊗ w2}.
Note that the order of the basis, again,
is arbitrary.5 So the state space for two
qubits, each with basis {|0〉, |1〉}, has ba-
sis {|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉},
which can be written more compactly as
{|00〉, |01〉, |10〉, |11〉}. More generally, we
write |x〉 to mean |bnbn−1 . . . b0〉 where bi
are the binary digits of the number x.

A basis for a 3-qubit system is

{|000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, |111〉}

and in general an n-qubit system has 2n

basis vectors. We can now see the expo-
nential growth of the state space with the
number of quantum particles. The tensor
product X ⊗ Y has dimension dim(X) ×
dim(Y).

The state |00〉 + |11〉 is an example of a
quantum state that cannot be described in
terms of the state of each of its components
(qubits) separately. In other words, we
cannot find a1, a2, b1, b2 such that (a1|0〉 +
b1|1〉) ⊗ (a2|0〉 + b2|1〉) = |00〉 + |11〉, since

(a1|0〉 + b1|1〉) ⊗ (a2|0〉 + b2|1〉) = a1a2|00〉
+ a1b2|01〉 + b1a2|10〉 + b1b2|11〉

and a1b2 = 0 implies that either a1a2 = 0
or b1b2 = 0. States that cannot be decom-
posed in this way are called entangled
states. These states represent situations
that have no classical counterpart and for
which we have no intuition. These are also
the states that provide the exponential
growth of quantum state spaces with the
number of particles.

5 It is only when we use matrix notation to describe
state transformations that the order of basis vectors
becomes relevant.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 309

Note that it would require vast re-
sources to simulate even a small quan-
tum system on traditional computers. The
evolution of quantum systems is exponen-
tially faster than their classical simula-
tions. The reason for the potential power
of quantum computers is the possibility of
exploiting the quantum state evolution as
a computational mechanism.

3.3. Measurement

The experiment in Section 2.1.2 illus-
trates how measurement of a single qubit
projects the quantum state on to one of the
basis states associated with the measur-
ing device. The result of a measurement is
probabilistic and the process of measure-
ment changes the state to that measured.

Let us look at an example of measure-
ment in a two-qubit system. Any two-qubit
state can be expressed as a|00〉 + b|01〉 +
c|10〉+d |11〉, where a, b, c, and d are com-
plex numbers such that |a|2 + |b|2 + |c|2 +
|d |2 = 1. Suppose we wish to measure
the first qubit with respect to the stan-
dard basis {|0〉, |1〉}. For convenience we
will rewrite the state as follows:

a|00〉 + b|01〉 + c|10〉 + d |11〉
= |0〉 ⊗ (a|0〉 + b|1〉) + |1〉 ⊗ (c|0〉 + d |1〉)
= u|0〉 ⊗ (a/u|0〉 + b/u|1〉) + v|1〉

⊗ (c/v|0〉 + d/v|1〉).

For u =
√

|a|2 + |b|2 and v =
√

|c|2 + |d |2
the vectors a/u|0〉 + b/u|1〉 and c/v|0〉 +
d/v|1〉 are of unit length. Once the state
has been rewritten as above, as a tensor
product of the bit being measured and a
second vector of unit length, the probabal-
istic result of a measurement is easy to
read off. Measurement of the first bit will
with probability u2 = |a|2 + |b|2 return
|0〉, projecting the state to |0〉 ⊗ (a/u|0〉 +
b/u|1〉), or with probability v = |c|2 + |d |2
yield |1〉, projecting the state to |1〉 ⊗
(c/v|0〉 + d/v|1〉). As |0〉 ⊗ (a/u|0〉 + b/u|1〉)
and |1〉 ⊗ (c/v|0〉 + d/v|1〉) are both unit
vectors, no scaling is necessary. Measur-
ing the second bit works similarly.

For the purposes of quantum computa-
tion, multibit measurement can be treated

as a series of single-bit measurements in
the standard basis. Other sorts of mea-
surements are possible, such as measur-
ing whether two qubits have the same
value without learning the actual value
of the two qubits. But such measurements
are equivalent to unitary transformations
followed by a standard measurement of in-
dividual qubits, and so it suffices to look
only at standard measurements.

In the two-qubit example, the state
space is a cartesian product of the sub-
space consisting of all states whose first
qubit is in the state |0〉 and the orthog-
onal subspace of states whose first qubit
is in the state |1〉. Any quantum state
can be written as the sum of two vectors,
one in each of the subspaces. A measure-
ment of k qubits in the standard basis
has 2k possible outcomes mi. Any device
measuring k qubits of an n-qubit system
splits of the 2n-dimensional state space H
into a cartesian product of orthogonal sub-
spaces S1, . . . , S2k with H = S1 ×· · ·× S2k ,
such that the value of the k qubits be-
ing measured is mi and the state after
measurement is in space the space Si for
some i. The device randomly chooses one
of the Si ’s, with probability the square of
the amplitude of the component of ψ in
Si, and projects the state into that com-
ponent, scaling to give length 1. Equiva-
lently, the probability that the result of the
measurement is a given value is the sum
of the squares of the the absolute values
of the amplitudes of all basis vectors com-
patible with that value of the measure-
ment.

Measurement gives another way of
thinking about entangled particles. Par-
ticles are not entangled if the measure-
ment of one has no effect on the other.
For instance, the state 1√

2
(|00〉 + |11〉) is

entangled, since the probability that the
first bit is measured to be |0〉 is 1/2 if the
second bit has not been measured. How-
ever, if the second bit had been measured,
the probability that the first bit is mea-
sured as |0〉 is either 1 or 0, depending on
whether the second bit was measured as
|0〉 or |1〉 respectively. Thus the probable
result of measuring the first bit is changed
by a measurement of the second bit. On

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

310 E. Rieffel and W. Polak

the other hand, the state 1√
2
(|00〉 + |01〉)

is not entangled: since 1√
2
(|00〉 + |01〉) =

|0〉⊗ 1√
2
(|0〉+ |1〉), any measurement of the

first bit will yield |0〉 regardless of whether
the second bit was measured. Similarly,
the second bit has a fifty-fifty chance of be-
ing measured as |0〉 regardless of whether
the first bit was measured or not. Note
that entanglement, in the sense that mea-
surement of one particle has an effect
on measurements of another particle, is
equivalent to our previous definition of en-
tangled states as states that cannot be
written as a tensor product of individual
states.

3.4. The EPR Paradox

Einstein, Podolsky, and Rosen proposed a
gedanken experiment that uses entangled
particles in a manner that seemed to vi-
olate fundamental principles of relativity.
Imagine a source that generates two maxi-
mally entangled particles 1√

2
|00〉+ 1√

2
|11〉,

called an EPR pair, and sends one each
to Alice and Bob.

Alice and Bob can be arbitrarily far
apart. Suppose that Alice measures her
particle and observes state |0〉. This means
that the combined state will now be |00〉,
and if now Bob measures his particle he
will also observe |0〉. Similarly, if Alice
measures |1〉, so will Bob. Note that the
change of the combined quantum state oc-
curs instantaneously even though the two
particles may be arbitrarily far apart. It
appears that this would enable Alice and
Bob to communicate faster than the speed
of light. Further analysis, as we shall see,
shows that even though there is a coupling
between the two particles, there is no way
for Alice or Bob to use this mechanism to
communicate.

There are two standard ways that peo-
ple use to describe entangled states and
their measurement. Both have their posi-
tive aspects, but both are incorrect and can
lead to misunderstandings. Let us exam-
ine both in turn.

Einstein, Podolsky, and Rosen proposed
that each particle has some internal state
that completely determines what the re-
sult of any given measurement will be.
This state is, for the moment, hidden from
us, and therefore the best we can currently
do is to give probabilistic predictions. Such
a theory is known as a local hidden vari-
able theory. The simplest hidden variable
theory for an EPR pair is that the par-
ticles are either both in state |0〉 or both
in state |1〉, we just don’t happen to know
which. In such a theory no communication
between possibly distant particles is nec-
essary to explain the correlated measure-
ments. However, this point of view can-
not explain the results of measurements
with respect to a different basis. In fact,
Bell showed that any local hidden vari-
able theory predicts that certain measure-
ments will satisfy an inequality, known as
Bell’s inequality. However, the result of ac-
tual experiments performing these mea-
surements show that Bell’s inequality is
violated. Thus quantum mechanics cannot
be explained by any local hidden variable
theory. See Greenstein and Zajonc [1997]
for a highly readable account of Bell’s the-
orem and related experiments.

The second standard description is in
terms of cause and effect. For example,
we said earlier that a measurement per-
formed by Alice affects a measurement
performed by Bob. However, this view is
incorrect also, and results, as Einstein,
Podolsky, and Rosen recognized, in deep
inconsistencies when combined with rela-
tivity theory. It is possible to set up the
EPR scenario so that one observer sees
Alice measure first, then Bob, while an-
other observer sees Bob measure first,
then Alice. According to relativity, physics
must equally well explain the observa-
tions of the first observer as the second.
While our terminology of cause and ef-
fect cannot be compatible with both ob-
servers, the actual experimental values

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 311

are invariant under change of observer.
The experimental results can be explained
equally well by Bob’s measuring first and
causing a change in the state of Alice’s par-
ticle, as the other way around. This sym-
metry shows that Alice and Bob cannot, in
fact, use their EPR pair to communicate
faster than the speed of light, and thus re-
solves the apparent paradox. All that can
be said is that Alice and Bob will observe
the same random behavior.

As we will see in the section on dense
coding and teleportation, EPR pairs can
be used to aid communication, albeit
communication slower than the speed of
light.

4. QUANTUM GATES

So far we have looked at static quantum
systems, which change only when mea-
sured. The dynamics of a quantum system,
when not being measured, are governed
by Schrödinger’s equation; the dynamics
must take states to states in a way that
preserves orthogonality. For a complex
vector space, linear transformations that
preserve orthogonality are unitary trans-
formations, defined as follows. Any linear
transformation on a complex vector space
can be described by a matrix. Let M ∗ de-
note the conjugate transpose of the ma-
trix M . A matrix M is unitary (describes
a unitary transformation) if M M ∗ = I .
Any unitary transformation of a quan-
tum state space is a legitimate quan-
tum transformation, and vice versa. One
can think of unitary transformations
as being rotations of a complex vector
space.

One important consequence of the
fact that quantum transformations are
unitary is that they are reversible.
Thus quantum gates must be reversible.
Bennett, Fredkin, and Toffoli had al-
ready looked at reversible versions of stan-
dard computing models showing that all
classical computations can be done re-
versibly. See Feynman’s Lectures on Com-
putation [Feynman 1996] for an account
of reversible computation and its rela-
tion to the energy of computation and
information.

4.1. Simple Quantum Gates

The following are some examples of use-
ful single-qubit quantum state transfor-
mations. Because of linearity, the transfor-
mations are fully specified by their effect
on the basis vectors. The associated ma-
trix, with {|0〉, |1〉} as the preferred ordered
basis, is also shown.

I : |0〉 → |0〉
|1〉 → |1〉

(
1 0
0 1

)

X : |0〉 → |1〉
|1〉 → |0〉

(
0 1
1 0

)

Y : |0〉 → −|1〉
|1〉 → |0〉

(
0 1

−1 0

)

Z : |0〉 → |0〉
|1〉 → −|1〉

(
1 0
0 −1

)

The names of these transformations are
conventional. I is the identity transforma-
tion, X is negation, Z is a phase shift op-
eration, and Y = Z X is a combination of
both. The X transformation was discussed
previously in Section 2.2. It can be readily
verified that these gates are unitary. For
example

Y Y ∗ =
(

0 −1
1 0

)(
0 1

−1 0

)
= I.

The controlled-NOT gate, Cnot , operates
on two qubits as follows: it changes the
second bit if the first bit is 1 and leaves
this bit unchanged otherwise. The vec-
tors |00〉, |01〉, |10〉, and |11〉 form an or-
thonormal basis for the state space of
a two-qubit system, a four-dimensional
complex vector space. In order to repre-
sent transformations of this space in ma-
trix notation we need to choose an isomor-
phism between this space and the space
of complex 4-tuples. There is no reason,
other than convention, to pick one iso-
morphism over another. The one we use
here associates |00〉, |01〉, |10〉, and |11〉
to the standard 4-tuple basis (1, 0, 0, 0)T ,
(0, 1, 0, 0)T , (0, 0, 1, 0)T , and (0, 0, 0, 1)T ,
in that order. The Cnot transformation has
representations

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

312 E. Rieffel and W. Polak

Cnot : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

The transformation Cnot is unitary since
C∗

not = Cnot and CnotCnot = I . The Cnot gate
cannot be decomposed into a tensor prod-
uct of two single-bit transformations.

It is useful to have graphical represen-
tations of quantum state transformations,
especially when several transformations
are combined. The controlled-NOT gate Cnot
is typically represented by a circuit of the
form

The open circle indicates the control bit,
and the × indicates the conditional nega-
tion of the subject bit. In general there can
be multiple control bits. Some authors use
a solid circle to indicate negative control,
in which the subject bit is toggled when
the control bit is 0.

Similarly, the controlled-controlled-NOT,
which negates the last bit of three if and
only if the first two are both 1, has the
following graphical representation.

Single bit operations are graphically
represented by appropriately labeled
boxes as shown.

4.1.1 The Walsh–Hadamard Transformation.
Another important single-bit transfor-
mation is the Hadamard transformation,
defined by

H : |0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

The transformation H has a number
of important applications. When applied
to |0〉, H creates a superposition state

1√
2
(|0〉 + |1〉). Applied to n bits individu-

ally, H generates a superposition of all 2n

possible states, which can be viewed as
the binary representation of the numbers
from 0 to 2n − 1.

(H ⊗ H ⊗ · · · ⊗ H)|00 . . . 0〉

= 1√
2n

((|0〉 + |1〉) ⊗ (|0〉 + |1〉)

⊗ · · · ⊗ (|0〉 + |1〉))

= 1√
2n

2n−1∑

x=0

|x〉.

The transformation that applies H to
n bits is called the Walsh, or Walsh–
Hadamard, transformation W . It can be
defined as a recursive decomposition of the
form

W1 = H, Wn+1 = H ⊗ Wn.

4.1.2 No Cloning. The unitary property im-
plies that quantum states cannot be copied
or cloned. The no cloning proof given
here, originally due to Wootters and Zurek
[1982], is a simple application of the lin-
earity of unitary transformations.

Assume that U is a unitary transforma-
tion that clones, in that U (|a0〉) = |aa〉
for all quantum states |a〉. Let |a〉 and |b〉
be two orthogonal quantum states. Say
U (|a0〉) = |aa〉 and U (|b0〉) = |bb〉. Con-
sider |c〉 = (1/

√
2)(|a〉 + |b〉). By linearity,

U (|c0〉) = 1√
2

(U (|a0〉) + U (|b0〉))

= 1√
2

(|aa〉 + |bb〉).

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 313

But if U is a cloning transformation then

U (|c0〉) = |cc〉 = 1/2(|aa〉 + |ab〉
+ |ba〉 + |bb〉),

which is not equal to (1/
√

2)(|aa〉 + |bb〉).
Thus there is no unitary operation that
can reliably clone unknown quantum
states. It is clear that cloning is not possi-
ble by using measurement, since measure-
ment is both probabalistic and destructive
of states not in the measuring device’s as-
sociated subspaces.

It is important to understand what sort
of cloning is and isn’t allowed. It is pos-
sible to clone a known quantum state.
What the no cloning principle tells us
is that it is impossible to reliably clone
an unknown quantum state. Also, it is
possible to obtain n particles in an en-
tangled state a|00 . . . 0〉 + b|11 . . . 1〉 from
an unknown state a|0〉 + b|1〉. Each of
these particles will behave in exactly the
same way when measured with respect to
the standard basis for quantum compu-
tation {|00 . . . 0〉, |00 . . . 01〉, . . . , |11 . . . 1〉},
but not when measured with respect to
other bases. It is not possible to create the
n-particle state (a|0〉 + b|1〉) ⊗ . . . ⊗ (a|0〉 +
b|1〉) from an unknown state a|0〉 + b|1〉.

4.2. Examples

The use of simple quantum gates can be
studied with two simple examples: dense
coding and teleportation.

Dense coding uses one quantum bit to-
gether with an EPR pair to encode and
transmit two classical bits. Since EPR
pairs can be distributed ahead of time,
only one qubit (particle) needs to be physi-
cally transmitted to communicate two bits
of information. This result is surprising
since, as was discussed in Section 3, only
one classical bit’s worth of information can
be extracted from a qubit. Teleportation
is the opposite of dense coding, in that it
uses two classical bits to transmit a single
qubit. Teleportation is surprising in light
of the no cloning principle of quantum me-
chanics, in that it enables the transmis-
sion of an unknown quantum state.

The key to both dense coding and tele-
portation is the use of entangled particles.
The initial set up is the same for both pro-
cesses. Alice and Bob wish to communi-
cate. Each is sent one of the entangled par-
ticles making up an EPR pair,

ψ0 = 1√
2

(|00〉 + |11〉).

Say Alice is sent the first particle, and
Bob the second. Until a particle is trans-
mitted, only Alice can perform transfor-
mations on her particle, and only Bob can
perform transformations on his.

4.2.1 Dense Coding. Alice. Alice receives
two classical bits, encoding the num-
bers 0 through 3. Depending on this
number Alice performs one of the trans-
formations {I, X , Y , Z } on her qubit of the

entangled pair ψ0. Transforming just one
bit of an entangled pair means performing
the identity transformation on the other
bit. The resulting state is shown in the
table.

Value Transformation New state
0 ψ0 = (I ⊗ I)ψ0

1√
2
(|00〉 + |11〉)

1 ψ1 = (X ⊗ I)ψ0
1√
2
(|10〉 + |01〉)

2 ψ2 = (Y ⊗ I)ψ0
1√
2
(−|10〉 + |01〉)

3 ψ3 = (Z ⊗ I)ψ0
1√
2
(|00〉 − |11〉)

Alice then sends her qubit to Bob.

Bob. Bob applies a controlled-NOT to the
two qubits of the entangled pair.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

314 E. Rieffel and W. Polak

Initial state Controlled-NOT First bit Second bit
ψ0 = 1√

2
(|00〉 + |11〉) 1√

2
(|00〉 + |10〉) 1√

2
(|0〉 + |1〉) |0〉

ψ1 = 1√
2
(|10〉 + |01〉) 1√

2
(|11〉 + |01〉) 1√

2
(|1〉 + |0〉) |1〉

ψ2 = 1√
2
(−|10〉 + |01〉) 1√

2
(−|11〉 + |01〉) 1√

2
(−|1〉 + |0〉) |1〉

ψ3 = 1√
2
(|00〉 − |11〉) 1√

2
(|00〉 − |10〉) 1√

2
(|0〉 − |1〉) |0〉

Note that Bob can now measure the sec-
ond qubit without disturbing the quantum
state. If the measurement returns |0〉 then
the encoded value was either 0 or 3, if the
measurement returns |1〉 then the encoded
value was either 1 or 2.

Bob now applies H to the first bit:

Initial state First bit H(First bit)
ψ0

1√
2
(|0〉 + |1〉) 1√

2

(1√
2
(|0〉 + |1〉) + 1√

2
(|0〉 − |1〉)

)
= |0〉

ψ1
1√
2
(|1〉 + |0〉) 1√

2

(1√
2
(|0〉 − |1〉) + 1√

2
(|0〉 + |1〉)

)
= |0〉

ψ2
1√
2
(−|1〉 + |0〉) 1√

2

(
− 1√

2
(|0〉 − |1〉) + 1√

2
(|0〉 + |1〉)

)
= |1〉

ψ3
1√
2
(|0〉 − |1〉) 1√

2

(1√
2
(|0〉 + |1〉) − 1√

2
(|0〉 − |1〉)

)
= |1〉

Finally, Bob measures the resulting bit,
which allows him to distinguish between
0 and 3, and 1 and 2.

4.2.2 Teleportation. The objective is to
transmit the quantum state of a particle
using classical bits and reconstruct the
exact quantum state at the receiver.
Since quantum state cannot be copied,
the quantum state of the given particle
will necessarily be destroyed. Single-bit
teleportation has been realized experi-
mentally [Boschi et al. 1998; Bouwmeester
et al. 1997; Nielsen et al. 1998].

Alice. Alice has a qubit whose state she
doesn’t know. She wants to send the state
of ths qubit

φ = a|0〉 + b|1〉

to Bob through classical channels. As with

dense coding, Alice and Bob each possess
one qubit of an entangled pair

ψ0 = 1√
2

(|00〉 + |11〉).

Alice applies the decoding step of dense
coding to the qubit φ to be transmitted and
her half of the entangled pair. The starting
state is quantum state

φ ⊗ ψ0 = 1√
2

(a|0〉 ⊗ (|00〉 + |11〉)

+ b|1〉 ⊗ (|00〉 + |11〉))

= 1√
2

(a|000〉 + a|011〉 + b|100〉

+ b|111〉),

of which Alice controls the first two bits
and Bob controls the last one. Alice now
applies Cnot ⊗ I and H ⊗ I ⊗ I to this
state:

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 315

(H ⊗ I ⊗ I)(Cnot ⊗ I)(φ ⊗ ψ0)

= (H ⊗ I ⊗ I)(Cnot ⊗ I)
1√
2

(a|000〉

+ a|011〉 + b|100〉 + b|111〉)

= (H ⊗ I ⊗ I)
1√
2

(a|000〉 + a|011〉

+ b|110〉 + b|101〉)

= 1
2

(a(|000〉 + |011〉 + |100〉 + |111〉)

+ b(|010〉 + |001〉 − |110〉 − |101〉))

= 1
2

(|00〉(a|0〉 + b|1〉) + |01〉(a|1〉

+ b|0〉) + |10〉(a|0〉 − b|1〉)
+ |11〉(a|1〉 − b|0〉))

Alice measures the first two qubits to get
one of |00〉, |01〉, |10〉, or |11〉 with equal
probability. Depending on the result of the
measurement, the quantum state of Bob’s
qubit is projected to a|0〉+b|1〉, a|1〉+b|0〉,
a|0〉−b|1〉, or a|1〉−b|0〉 respectively. Alice
sends the result of her measurement as
two classical bits to Bob.

Note that when she measured it, Alice
irretrievably altered the state of her orig-
inal qubit φ, whose state she is in the pro-
cess of sending to Bob. This loss of the orig-
inal state is the reason teleportation does
not violate the no cloning principle.

Bob. When Bob receives the two classi-
cal bits from Alice he knows how the state
of his half of the entangled pair compares
to the original state of Alice’s qubit.

Bits received State Decoding
00 a|0〉 + b|1〉 I
01 a|1〉 + b|0〉 X
10 a|0〉 − b|1〉 Z
11 a|1〉 − b|0〉 Y

Bob can reconstruct the original state of
Alice’s qubit, φ, by applying the appropri-
ate decoding transformation to his part of
the entangled pair. Note that this is the
encoding step of dense coding.

5. QUANTUM COMPUTERS

This section discusses how quantum me-
chanics can be used to perform compu-
tations and how these computations are
qualitatively different from those per-
formed by a conventional computer. Re-
call from Section 4 that all quantum state
transformations have to be reversible.
While the classical NOT gate is reversible,
AND, OR, and NAND gates are not. Thus
it is not obvious that quantum trans-
formations can carry out all classical
computations. The first subsection de-
scribes complete sets of reversible gates
that can perform any classical computa-
tion on a quantum computer. Further-
more, it describes sets of gates with which
all quantum computations can be done.
The second subsection discusses quantum
parallelism.

5.1. Quantum Gate Arrays

The bra/ket notation is useful in defining
complex unitary operations. For two arbi-
trary unitary transformations U1 and U2,
the “conditional” transformation |0〉〈0| ⊗
U1 + |1〉〈1| ⊗ U2 is also unitary. The
controlled-NOT gate can be defined by

Cnot = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X .

The three-bit controlled-controlled-NOT
gate or Toffoli gate of Section 4 is also an
instance of this conditional definition:

T = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ Cnot .

The Toffoli gate T can be used to construct
complete set of boolean connectives, as can
be seen from the fact that it can be used to
construct the AND and NOT operators in the
following way:

T |1, 1, x〉 = |1, 1, ¬x〉
T |x, y , 0〉 = |x, y , x ∧ y〉

The T gate is sufficient to construct arbi-
trary combinatorial circuits.

The following quantum circuit, for ex-
ample, implements a 1 bit full adder using
Toffoli and controlled-NOT gates:

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

316 E. Rieffel and W. Polak

where x and y are the data bits, s is their
sum (modulo 2), c is the incoming carry
bit, and c′ is the new carry bit. Vedral,
Barenco, and Ekert [1996] define more
complex circuits that include in-place ad-
dition and modular addition.

The Fredkin gate is a “controlled swap”
and can be defined as

F = |0〉〈0| ⊗ I ⊗ I + |1〉〈1| ⊗ S

where S is the swap operation

S = |00〉〈00|+|01〉〈10|+|10〉〈01|+|11〉〈11|.

The reader can verify that F , like T , is
complete for combinatorial circuits.

Deutsch has shown [1985] that it is
possible to construct reversible quantum
gates for any classically computable func-
tion. In fact, it is possible to conceive
of a universal quantum Turing machine
[Bernstein and Vazirani 1997]. In this con-
struction we must assume a sufficient sup-
ply of bits that correspond to the tape of a
Turing machine.

Knowing that an arbitrary classical
function f with m input and k output
bits can be implemented on quantum
computer, we assume the existence of a
quantum gate array U f that implements
f . U f is a m+k–bit transformation of the
form U f : |x, y〉 → |x, y ⊕ f (x)〉, where ⊕
denotes the bitwise exclusive-OR.6 Quan-
tum gate arrays U f , defined in this way,
are unitary for any function f . To compute
f (x) we apply U f to |x〉 tensored with
k zeros |x, 0〉. Since f (x) ⊕ f (x) = 0 we
have U f U f = I . Graphically the trans-
formation U f : |x, y〉 → |x, y ⊕ f (x)〉 is
depicted as

6 ⊕ is not the direct sum of vectors.

While the T and F gates are complete
for combinatorial circuits, they cannot
achieve arbitrary quantum state trans-
formations. In order to realize arbitrary
unitary transformations,7 single-bit rota-
tions need to be included. Barenco et al.
[1995] show that Cnot together with all
1-bit quantum gates is a universal gate
set. It suffices to include the following 1-bit
transformations

(
cos α sin α

− sin α cos α

)
,
(

eiα 0
0 e−iα

)

for all 0 ≤ α ≤ 2π together with the Cnot to
obtain a universal set of gates. As we shall
see, such nonclassical transformations are
crucial for exploiting the power of quan-
tum computers.

5.2. Quantum Parallelism

What happens if U f is applied to input
that is in a superposition? The answer
is easy but powerful: since U f is a lin-
ear transformation, it is applied to all ba-
sis vectors in the superposition simulta-
neously and will generate a superposition
of the results. In this way, it is possible to
compute f (x) for n values of x in a sin-
gle application of U f . This effect is called
quantum parallelism.

The power of quantum algorithms
comes from taking advantage of quan-
tum parallelism and entanglement. So
most quantum algorithms begin by com-
puting a function of interest on a super-
position of all values as follows. Start
with an n-qubit state |00 . . . 0〉. Apply the

7 More precisely, we mean arbitrary unitary trans-
formations up to a constant phase factor. A constant
phase shift of the state has no physical, and therefore
no computational, significance.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 317

Walsh–Hadamard transformation W of
Section 4.1.1 to get a superposition

1√
2n

(|00 . . . 0〉 + |00 . . . 1〉 + · · · + |11 . . . 1〉)

= 1√
2n

2n−1∑

x=0

|x〉

which should be viewed as the superposi-
tion of all integers 0 ≤ x < 2n. Add a k-bit
register |0〉 then by linearity

U f

(
1√
2n

2n−1∑

x=0

|x, 0〉
)

= 1√
2n

2n−1∑

x=0

U f (|x, 0〉)

= 1√
2n

2n−1∑

x=0

|x, f (x)〉

where f (x) is the function of interest. Note
that since n qubits enable working simul-
taneously with 2n states, quantum paral-
lelism circumvents the time/space trade-
off of classical parallelism through its
ability to provide an exponential amount
of computational space in a linear amount
of physical space.

Consider the trivial example of a
controlled-controlled-NOT (Toffoli) gate, T ,
that computes the conjunction of two val-
ues:

Now take as input a superposition of all
possible bit combinations of x and y to-
gether with the necessary 0:

H|0〉 ⊗ H|0〉 ⊗ |0〉

= 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ |0〉

= 1
2

(|000〉 + |010〉 + |100〉 + |110〉).

Apply T to the superposition of inputs to
get a superposition of the results, namely

T (H|0〉 ⊗ H|0〉 ⊗ |0〉) = 1
2

(|000〉 + |010〉

+ |100〉 + |111〉).

The resulting superposition can be viewed
as a truth table for the conjunction, or
more generally as the graph of a function.
In the output the values of x, y , and x ∧ y
are entangled in such a way that measur-
ing the result will give one line of the truth
table, or more generally one point of graph
of the function. Note that the bits can be
measured in any order: measuring the re-
sult will project the state to a superposi-
tion of the set of all input values for which
f produces this result, and measuring the
input will project the result to the corre-
sponding function value.

Measuring at this point gives no ad-
vantage over classical parallelism because
only one result is obtained, and worse still
one cannot even choose which result one
gets. The heart of any quantum algorithm
is the way in which it manipulates quan-
tum parallelism so that desired results
will be measured with high probability.
This sort of manipulation has no classical
analog and requires nontraditional pro-
gramming techniques. We list a couple of
the techniques currently known.! Amplify output values of interest. The

general idea is to transform the state in
such a way that values of interest have
a larger amplitude and therefore have
a higher probability of being measured.
Examples of this approach will be de-
scribed in Section 7.! Find common properties of all the val-
ues of f (x). This idea is exploited in
Shor’s algorithm, which uses a quantum
Fourier transformation to obtain the pe-
riod of f .

6. SHOR’S ALGORITHM

In 1994, inspired by work of Daniel Si-
mon (later published in Simon [1997]),
Peter Shor found a bounded probabil-
ity polynomial time algorithm for fac-
toring n-digit numbers on a quantum
computer. Since the 1970s people have
searched for efficient algorithms for factor-
ing integers. The most efficient classical

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

318 E. Rieffel and W. Polak

algorithm known today is that of Lenstra
and Lenstra [1993], which is exponential
in the size of the input. The input is the list
of digits of M , which has size n∼ log M .
People were confident enough that no effi-
cient algorithm existed, that the security
of cryptographic systems, like the widely
used RSA algorithm, depend on the dif-
ficulty of this problem. Shor’s result sur-
prised the community at large, prompting
widespread interest in quantum comput-
ing.

Most factoring algorithms, including
Shor’s, use a standard reduction of the
factoring problem to the problem of find-
ing the period of a function. Shor uses
quantum parallelism in the standard way
to obtain a superposition of all the values
of the function in one step. He then com-
putes the quantum Fourier transform of
the function, which, like classical Fourier
transforms, puts all the amplitude of the
function into multiples of the reciprocal of
the period. With high probability, measur-
ing the state yields the period, which in
turn is used to factor the integer M .

This description captures the essence
of the quantum algorithm but is some-
thing of an oversimplification. The biggest
complication is that the quantum Fourier
transform is based on the fast Fourier
transform and thus gives only approxi-
mate results in most cases. Thus extract-
ing the period is trickier than outlined
here, but the techniques for extracting the
period are classical.

We will first describe the quantum
Fourier transform and then give a detailed
outline of Shor’s algorithm.

6.1. The Quantum Fourier Transform

Fourier transforms in general map from
the time domain to the frequency domain.
So Fourier transforms map functions of pe-
riod r to functions that have nonzero val-
ues only at multiples of the frequency 2π

r .
The discrete Fourier transform (DFT) op-
erates on N equally spaced samples in the
interval [0, 2π) for some N and outputs a
function whose domain is the integers be-
tween 0 and N − 1. The discrete Fourier
transform of a (sampled) function of period

r is a function concentrated near multi-
ples of N

r . If the period r divides N evenly,
the result is a function that has nonzero
values only at multiples of N

r . Otherwise,
the result will approximate this behavior,
and there will be nonzero terms at integers
close to multiples of N

r .
The Fast Fourier transform (FFT) is a

version of DFT where N is a power of 2.
The quantum Fourier transform (QFT) is
a variant of the discrete Fourier trans-
form, which, like FFT, uses powers of 2.
The quantum Fourier transform operates
on the amplitude of the quantum state, by
sending

∑

x

g (x)|x〉 →
∑

c

G(c)|c〉,

where G(c) is the discrete Fourier trans-
form of g (x), and x and c both range over
the binary representations for the integers
between 0 and N − 1. If the state were
measured after the Fourier transform was
performed, the probability that the result
was |c〉 would be |G(c)|2. Note that the
quantum Fourier transform does not out-
put a function the way the U f transforma-
tion does; no output appears in an extra
register.

Applying the quantum Fourier trans-
form to a periodic function g (x) with pe-
riod r, we would expect to end up with∑

c G(c)|c〉, where G(c) is zero except at
multiples of N

r . Thus, when the state is
measured, the result would be a multiple
of N

r , say j N
r . But as described above, the

quantum Fourier transform only gives ap-
proximate results for periods that are not
a power of two (i.e., do not divide N). How-
ever the larger the power of two used as a
base for the transform, the better the ap-
proximation. The quantum Fourier trans-
form UQFT with base N = 2m is defined
by

UQFT : |x〉 → 1√
2m

2m−1∑

c=0

exp
(

2πicx
2m

)
|c〉.

In order for Shor’s algorithm to be
a polynomial algorithm, the quantum
Fourier transform must be efficiently

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 319

computable. Shor shows that the quan-
tum Fourier transform with base 2m can be
constructed using only m(m+1)

2 gates. The
construction makes use of two types of
gates. One is a gate to perform the famil-
iar Hadamard transformation H. We will
denote by Hj the Hadamard transforma-
tion applied to the j th bit. The other type
of gate performs 2-bit transformations of
the form

Sj ,k =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθk− j



 ,

where θk− j = π/2k− j . This transformation
acts on the kth and j th bits of a larger
register. The quantum Fourier transform
is given by

H0S0,1 . . . S0,m−1 H1 . . . Hm−3

Sm−3,m−2Sm−3,m−1 Hm−2Sm−2,m−1 Hm−1

followed by a bit reversal transformation.
If FFT is followed by measurement, as in
Shor’s algorithm, the bit reversal can be
performed classically. See Shor [1997] for
more details.

6.2. A Detailed Outline of Shor’s algorithm

The detailed steps of Shor’s algorithm are
illustrated with a running example where
we factor M = 21.

Step 1. Quantum parallelism. Choose an
integer a arbitrarily. If a is not relatively
prime to M , we have found a factor of M .
Otherwise apply the rest of the algorithm.

Let m be such that M 2 ≤ 2m < 2M 2.
[This choice is made so that the approxi-
mation used in Step 3 for functions whose
period is not a power of 2 will be good
enough for the rest of the algorithm to
work.] Use quantum parallelism as de-
scribed in Section 5.2 to compute f (x) =
ax mod M for all integers from 0 to 2m − 1.
The function is thus encoded in the quan-
tum state

1√
2m

2m−1∑

x=0

|x, f (x)〉. (1)

Example. Suppose a = 11 were ran-
domly chosen. Since M 2 = 441 ≤ 29 <
882 = 2M 2, we find m = 9. Thus, a total
of 14 quantum bits, 9 for x and 5 for f (x),
are required to compute the superposition
of equation 1.

Step 2. A state whose amplitude has the same
period as f . The quantum Fourier trans-
form acts on the amplitude function as-
sociated with the input state. In order to
use the quantum Fourier transform to ob-
tain the period of f , a state is constructed
whose amplitude function has the same
period as f .

To construct such a state, measure the
last 3log2 M 4 qubits of the state of Eq. 1
that encode f (x). A random value u is ob-
tained. The value u is not of interest in it-
self; only the effect the measurement has
on our set of superpositions is of inter-
est. This measurement projects the state
space onto the subspace compatible with
the measured value, so the state after
measurement is

C
∑

x

g (x)|x, u〉,

for some scale factor C where

g (x) =
{

1 if f (x) = u
0 otherwise.

Note that the x ’s that actually appear in
the sum, those with g (x) 5= 0, differ from
each other by multiples of the period; thus
g (x) is the function we are looking for. If
we could measure two successive x ’s in the
sum, we would have the period. Unfortu-
nately the laws of quantum physics permit
only one measurement.

Example. Suppose that random mea-
surement of the superposition of
Eq. 1 produces 8. The state after this
measurement8 (Figure 2) clearly shows
the periodicity of f .

Step 3. Applying a quantum Fourier trans-
form. The |u〉 part of the state will not be

8 Only the 9 bits of x are shown in Figure 2; the bits
of f (x) are known from the measurement.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

320 E. Rieffel and W. Polak

Fig. 2. Probabilities for measuring x when measuring the state C&x∈X |x, 8〉
obtained in Step 2, where X = {x|211x mod 21 = 8}}.

used, so we will no longer write it. Ap-
ply the quantum Fourier transform to the
state obtained in Step 2.

UQ F T :
∑

x g (x)|x〉 →
∑

c G(c)|c〉

Standard Fourier analysis tells us that
when the period r of the function g (x)
defined in Step 2 is a power of 2, the re-
sult of the quantum Fourier transform is

∑

j

c j

∣∣∣∣ j
2m

r

〉
,

where the amplitude is 0 except at multi-
ples of 2m/r. When the period r does not
divide 2m, the transform approximates the
exact case, so most of the amplitude is at-
tached to integers close to multiples of 2m

r .

Example. Figure 3 shows the result of
applying the quantum Fourier transform
to the state obtained in Step 2. Note
that Figure 3 is the graph of the fast
Fourier transform of the function shown
in Figure 2. In this particular example the
period of f does not divide 2m.

Step 4. Extracting the period. Measure the
state in the standard basis for quantum
computation, and call the result v. In the
case where the period happens to be a
power of 2, so that the quantum Fourier
transform gives exactly multiples of 2m/r,
the period is easy to extract. In this case,
v = j 2m

r for some j . Most of the time j and
r will be relatively prime, in which case

reducing the fraction v
2m (= j

r) to its lowest
terms will yield a fraction whose denom-
inator q is the period r. The fact that
in general the quantum Fourier trans-
form only approximately gives multiples
of the scaled frequency complicates the
extraction of the period from the measure-
ment. When the period is not a power
of 2, a good guess for the period can be
obtained using the continued fraction
expansion of v

2m . This classical technique
is described in Appendix B.

Example. Say that measurement of the
state returns v = 427. Since v and 2m

are relatively prime, the period r will
most likely not divide 2m and the contin-
ued fraction expansion described in Ap-
pendix B needs to be applied. The follow-
ing is a trace of the algorithm described in
Appendix B:

i ai pi qi εi
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

which terminates with 6 = q2 < M ≤ q3.
Thus, q = 6 is likely to be the period of f .

Step 5. Finding a factor of M. When our
guess for the period, q, is even, use the
Euclidean algorithm to efficiently check
whether either aq/2 + 1 or aq/2 − 1 has a
nontrivial common factor with M .

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 321

Fig. 3. Probability distribution of the quantum state after Fourier transfor-
mation.

The reason why aq/2 + 1 or aq/2 − 1 is
likely to have a nontrivial common fac-
tor with M is as follows. If q is indeed
the period of f (x) = ax mod M , then
aq = 1 mod M, since aqax = ax mod M for
all x. If q is even, we can write

(aq/2 + 1)(aq/2 − 1) = 0 mod M .

Thus, as long as neither aq/2+1 nor aq/2−1
is a multiple of M , either aq/2+1 or aq/2−1
has a nontrivial common factor with M .

Example. Since 6 is even either a6/2−1 =
113 − 1 = 1330 or a6/2 + 1 = 113 + 1 =
1332 will have a common factor with M. In
this particular example we find two factors
gcd(21, 1330) = 7 and gcd(21, 1332) = 3.

Step 6. Repeating the algorithm, if necessary.
Various things could have gone wrong so
that this process does not yield a factor of
M :

1. The value v was not close enough to a
multiple of 2m

r .
2. The period r and the multiplier j could

have had a common factor so that the
denominator q was actually a factor of
the period, not the period itself.

3. Step 5 yields M as M ’s factor.
4. The period of f (x) = ax mod M is odd.

Shor shows that few repetitions of this al-
gorithm yields a factor of M with high
probability.

6.2.1 A Comment on Step 2 of Shor’s Algorithm.
The measurement in Step 2 can be skipped
entirely. More generally Bernstein and
Vazirani [1997] show that measurements
in the middle of an algorithm can always
be avoided. If the measurement in Step 2
is omitted, the state consists of a superpo-
sitions of several periodic functions all of
which have the same period. By the linear-
ity of quantum algorithms, applying the
quantum Fourier transformation leads to
a superposition of the Fourier transforms
of these functions, each of which is entan-
gled with the corresponding u and there-
fore do not interfere with each other. Mea-
surement gives a value from one of these
Fourier transforms. Seeing how this argu-
ment can be formalized illustrates some
of the subtleties of working with quan-
tum superpostions. Apply the quantum
Fourier transform tensored with the iden-
tity, UQ F T ⊗ I, to C&2n−1

x=0 |x, f (x)〉 to get

C ′
2n−1∑

x=0

2m−1∑

c=0

exp
(

2πicx
2m

)
|c, f (x)〉,

which is equal to

C ′
∑

u

∑

x| f (x)=u

∑

c

exp
(

2πicx
2m

)
|c, u〉

for u in the range of f (x). What results
is a superposition of the results of Step 3
for all possible u’s. The quantum Fourier

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

322 E. Rieffel and W. Polak

transform is being applied to a family
of separate functions gu indexed by u
where

gu =
{

1 if f (x) = u
0 otherwise,

all with the same period. Note that the am-
plitudes in states with different u’s never
interfere (add or cancel) with each other.
The transform UQ F T ⊗ I as applied above
can be written

UQ F T ⊗ I : C
∑

u∈R

2n−1∑

x=0

gu(x)|x, f (x)〉

→ C ′
∑

u∈R

2n−1∑

x=0

2n−1∑

c=0

Gu(c)|c, u〉,

where Gu(c) is the discrete Fourier trans-
form of gu(x) and R is the range of f (x).

Measure c and run Steps 4 and 5 as
before.

7. SEARCH PROBLEMS

A large class of problems can be speci-
fied as search problems of the form “find
some x in a set of possible solutions such
that statement P (x) is true.” Such prob-
lems range from database search to sort-
ing to graph coloring. For example, the
graph coloring problem can be viewed as a
search for an assignment of colors to ver-
tices so that the statement “all adjacent
vertices have different colors” is true. Sim-
ilarly, a sorting problem can be viewed as
a search for a permutation for which the
statement “the permutation x takes the
initial state to the desired sorted state” is
true.

An unstructured search problem is one
where nothing is know (or no assumption
are used) about the structure of the solu-
tion space and the statement P . For exam-
ple, determining P (x0) provides no infor-
mation about the possible value of P (x1)
for x0 5= x1. A structured search problem
is one where information about the search
space and statement P can be exploited.

For instance, searching an alphabet-
ized list is a structured search problem

and the structure can be exploited to
construct efficient algorithms. In other
cases, like constraint satisfaction prob-
lems such as 3-SAT or graph colorabil-
ity, the problem structure can be exploited
for heuristic algorithms that yield effi-
cient solution for some problem instances.
But in the general case of an unstruc-
tured problem, randomly testing the truth
of statements P (xi) one by one is the
best that can be done classically. For a
search space of size N , the general un-
structured search problem requires O(N)
evaluations of P . On a quantum computer,
however, Grover showed that the unstruc-
tured search problem can be solved with
bounded probability within O(

√
N) eval-

uations of P . Thus Grover’s search algo-
rithm [Grover 1996] is provably more ef-
ficient than any algorithm that could run
on a classical computer.

While Grover’s algorithm is optimal
[Bennett et al. 1997; Boyer et al. 1996;
Zalka 1997] for completely unstructured
searches, most search problems involve
searching a structured solution space.
Just as there are classical heuristic al-
gorithms that exploit problem structure,
one would expect that there are more
efficient quantum algorithms for cer-
tain structured problem instances. Cerf
et al. [1998] use Grover’s search al-
gorithm in place of classical searches
within a heuristic algorithm to show that
a quadratic speed-up is possible over
a particularly simple classical heuristic
for solving NP-hard problems. Brassard
et al. [1998], using the techniques of
Grover’s search algorithm in a less obvious
way, show that general heuristic searches
have quantum analogs with quadratic
speed-up.

There is hope that for certain struc-
tured problems a speed-up greater than
quadratic is possible. Such algorithms will
likely require new approaches that are not
merely quantum implementations of clas-
sical algorithms. Shor’s algorithm, when
viewed as a search for factors, is an ex-
ample of an algorithm that achieves expo-
nential speed-up by using problem struc-
ture (number theory) in new ways unique
to quantum computation.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 323

Tad Hogg has developed heuristic quan-
tum search algorithms that exploit prob-
lem structure. His approach is distincly
nonclassical and uses unique properties of
quantum computation. One problem with
this approach is that, like most heuristic
algorithms, the use of problem structure
is complicated enough that it is hard to
determine the probability that a single
execution of an algorithm will give a cor-
rect answer. Therefore, it is unknown how
efficient Hogg’s algorithms are. Classi-
cally the efficiency of heuristic algorithms
is estimated by empirically testing the
algorithm. But as there is an exponential
slowdown when simulating a quantum
computer on a classical one, empirical test-
ing of quantum algorithms is currently in-
feasible except in small cases. Small cases
indicate that Hogg’s algorithms are more
efficient than Grover’s algorithm applied
to structured search problems, but that
the speed-up is likely to be only polyno-
mial. While less interesting theoretically,
even a small polynomial speed-up on av-
erage for these computationally difficult
problems is of significant practical inter-
est. Until sufficiently large quantum com-
puters are built, or better techniques for
analyzing such algorithms are found, the
efficiency cannot be determined for sure.

7.1. Grover’s Search Algorithm

Grover’s algorithm searches an unstruc-
tured list of size N for an x that makes a
statement true. Let n be such that 2n ≥ N ,
and let Up be the quantum gate that im-
plements the classical function P (x) that
tests the truth of the statement, where
true is encoded as 1.

UP : |x, 0〉 → |x, P (x)〉

The first step is the standard one
for quantum computing described in
Section 5.2. Compute P for all possible in-
puts xi, by applying UP to a register con-
taining the superposition 1√

2n &n−1
x=0 |x〉 of all

2n possible inputs x together with a regis-
ter set to 0, leading to the superposition

1√
2n

2n−1∑

x=0

|x, P (x)〉. (2)

The difficult step is to obtain a useful re-
sult from this superposition.

For any x0 such that P (x0) is true, |x0, 1〉
will be part of the superposition of Eq. 2.
Since the amplitude of such a state is 1√

2n ,
the probability that a random measure-
ment of the superposition produces x0 is
only 2−n. The trick is to change the quan-
tum state in Eq. 2 so as to greatly increase
the amplitude of vectors |x0, 1〉 for which
P is true and decrease the amplitude of
vectors |x, 0〉 for which P is false.

Once such a transformation of the quan-
tum state has been performed, one can
simply measure the last qubit of the quan-
tum state which represents P (x). Because
of the amplitude change, there is a high
probability that the result will be 1. If
this is the case, the measurement has pro-
jected the state of Eq. 2 onto the subspace

1√
k
&k

i=1|xi, 1〉 where k is the number of so-
lutions. Further measurement of the re-
maining bits will provide one of these so-
lutions. If the measurement of qubit P (x)
yields 0, then the whole process is started
over and the superposition of Eq. 2 must
be computed again.

Grover’s algorithm then consists of the
following steps:

1. Prepare a register containing a super-
position of all possible values xi ∈
[0 . . . 2n − 1].

2. Compute P (xi) on this register.
3. Change amplitude aj to −aj for x j such

that P (x j) = 1. An efficient algorithm
for changing selected signs is described
in Section 7.1.2. A plot of the ampli-
tudes after this step is shown here.

4. Apply inversion about the average to in-
crease amplitude of x j with P (x j) = 1.
The quantum algorithm to efficiently
perform inversion about the average is

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

324 E. Rieffel and W. Polak

given in Section 7.1.1. The resulting
amplitudes are shown, where the am-
plitude of all the xi ’s with P (xi) = 0 have
been diminished imperceptibly.

5. Repeat steps 2 through 4 π
4

√
2n times.

6. Read the result.

Boyer et al. [1996] provide a detailed
analysis of the performance of Grover’s al-
gorithm. They prove that Grover’s algo-
rithm is optimal up to a constant factor;
no quantum algorithm can perform an un-
structured search faster. They also show
that if there is only a single x0 such that
P (x0) is true, then after π

8

√
2n iterations

of steps 2 through 4 the failure rate is 0.5.
After iterating π

4

√
2n times the failure rate

drops to 2−n. Interestingly, additional it-
erations will increase the failure rate. For
example, after π

2

√
2n iterations the failure

rate is close to 1.
There are many classical algorithms

in which a procedure is repeated over
and over again for ever better results.
Repeating quantum procedures may im-
prove results for a while, but after a
sufficient number of repetitions the re-
sults will get worse again. Quantum proce-
dures are unitary transformations, which
are rotations of complex space, and thus
while a repeated applications of a quan-
tum transform may rotate the state closer
and closer to the desired state for a while,
eventually it will rotate past the desired
state to get farther and farther from the
desired state. Thus to obtain useful re-
sults from a repeated application of a
quantum transformation, one must know
when to stop. Brassard et al. [1998] de-
scribe an extension of Grover’s algorithm
that uses Fourier transforms to determine
the number of solutions and the optimal
number of iterations. The extension does

not increase the overall complexity of the
algorithm.

Grover has extended his algorithm to
achieve quadratic speed-up for other non-
search problems such as computing the
mean and median of a function [Grover
1998]. Using similar techniques Grover
has also shown that certain search prob-
lems that classically run in O(log N) can
be solved in O(1) on a quantum computer.
Grover’s search can used as a subrou-
tine in other quantum computations, since
Biron et al. [1998] show how the technique
can be used with arbitrary initial ampli-
tude distributions while still maintaining
O(

√
N) complexity.

7.1.1 Inversion about the Average. To perform
inversion about the average on a quantum
computer the inversion must be a unitary
transformation. Furthermore, in order for
the algorithm as a whole to solve the prob-
lem in O(

√
N) time, the inversion must be

able to be performed efficiently. As will be
shown shortly, the inversion can be accom-
plished with O(n) = O(log(N)) quantum
gates.

It is easy to see that the transformation

N−1∑

i=0

ai|xi〉 →
N−1∑

i=0

(2A − ai)|xi〉,

where A denotes the average of the ai ’s, is
performed by the N × N matrix

D =





2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
.
2
N

2
N . . . 2

N − 1




.

Since DD∗ = I , D is unitary and is
therefore a possible quantum state trans-
formation.

We now turn to the question of how ef-
ficiently the transformation can be per-
formed, and show that it can be decom-
posed into O(n) = O(log(N)) elementary
quantum gates. Following Grover, D can
be defined as D = W RW , where W is

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 325

the Walsh–Hadamard transform defined
in Section 4 and

R =





1 0 . . . 0
0 −1 0 . . .
0 0
0 . . . 0 −1



 .

To see that D = W RW , consider R =
R ′ − I where I is the identity and

R ′ =





2 0 . . . 0
0 0 0 . . .
0 0
0 . . . 0 0



 .

Now W RW = W (R ′ − I)W = W R ′W − I .
It is easily verified that

W R ′W =





2
N

2
N . . . 2

N
2
N

2
N

2
N . . .

2
N 2

N
2
N . . . 2

N
2
N





and thus W R ′W − I = D.

7.1.2 Changing the Sign. We still have to ex-
plain how to invert the amplitude of the
desired result. We show, more generally, a
surprisingly simple way to invert the am-
plitude of exactly those states with P (x) =
1 for a general P .

Let UP be the gate array that per-
forms the computation UP : |x, b〉 →
|x, b ⊕ P (x)〉. Apply UP to the superposi-
tion |ψ〉 = 1√

2n

∑n−1
x=0 |x〉 and choose b =

1√
2
|0〉 − |1〉 to end up in a state where

the sign of all x with P (x) = 1 has been
changed, and b is unchanged.

To see this, let X 0 = {x|P (x) = 0} and
X 1 = {x|P (x) = 1}, and consider the ap-
plication of UP .

UP (|ψ, b〉)

= 1√
2n+1

UP

(
∑

x∈X 0

|x, 0〉 +
∑

x∈X 1

|x, 0〉

−
∑

x∈X 0

|x, 1〉 −
∑

x∈X 1

|x, 1〉
)

= 1√
2n+1

(
∑

x∈X 0

|x, 0 ⊕ 0〉

+
∑

x∈X 1

|x, 0 ⊕ 1〉 −
∑

x∈X 0

|x, 1 ⊕ 0〉

−
∑

x∈X 1

|x, 1 ⊕ 1〉
)

= 1√
2n+1

(
∑

x∈X 0

|x, 0〉 +
∑

x∈X 1

|x, 1〉

−
∑

x∈X 0

|x, 1〉 −
∑

x∈X 1

|x, 0〉
)

= 1√
2n

(
∑

x∈X 0

|x〉 −
∑

x∈X 1

|x〉
)

⊗ b

Thus the amplitude of the states in X 1
have been inverted as desired.

7.2. Heuristic Search

7.2.1 A Note on the Walsh–Hadamard Trans-
form. Another representation for the
Walsh–Hadamard transformation of Sec-
tion 4.1.1 is useful for understanding how
to use the Walsh–Hadamard transforma-
tion in constructing quantum algorithms.
The n-bit Walsh–Hadamard transforma-
tion is a 2n × 2n matrix W with entries
Wrs where both r and s range from 0 to
2n − 1. We will show that

Wrs = 1√
2n

(−1)r·s

where r · s is the number of common 1
bits in the the binary representations of r
and s.

To see this equality, note that

W (|r〉) =
∑

s

Wrs|s〉.

Let rn−1 . . . r0 be the binary representation
of r and sn−1 . . . s0 be the binary represen-
tation of s.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

326 E. Rieffel and W. Polak

Fig. 4. Lattice of variable assignments in a CSP.

W (|r〉) = (H ⊗ · · · ⊗ H)(|rn−1〉 ⊗ · · · ⊗ |r0〉)

= 1√
2n

(|0〉 + (−1)rn−1 |1〉) ⊗ · · ·

⊗ (|0〉 + (−1)r0 |1〉)

= 1√
2n

2n−1∑

s=0

(−1)sn−1rn−1 |sn−1〉 ⊗ · · ·

⊗ (−1)s0r0 |s0〉

= 1√
2n

2n−1∑

s=0

(−1)s·r |s〉.

7.2.2 Overview of Hogg’s Algorithms. A con-
straint satisfaction problem (CSP) has n
variables V = {v1, . . . , vn} which can take
m different values X = {x1, . . . , xm} sub-
ject to certain constraints C1, . . . , Cl . So-
lutions to a constraint satisfaction prob-
lem lie in the space of assignments of xi ’s
to vj ’s, V × X . There is a natural lattice
structure on this space given by set con-
tainment. Figure 4 shows the assignment
space and its lattice structure for n = 2,
m = 2, x1 = 0, and x2 = 1. Note that
the lattice includes both incomplete and
inconsistent assignments.

Using the standard correspondence be-
tween sets of enumerated elements and bi-
nary sequences, in which a 1 in the nth
place corresponds to inclusion of the nth
element and a 0 corresponds to exclusion,
standard basis vectors for a quantum state
space can be put in one to one correspon-
dence with the sets. For example, Figure 5
shows the lattice of Figure 4 rewritten in
ket notation, where the elements v1 = 0,
v1 = 1, v2 = 0 and v2 = 1 have been enu-
merated in that order.

If a state violates a constraint, then so
do all states above it in the lattice. The
approach Hogg takes in designing quan-
tum algorithms for constraint satisfaction
problems is to begin with all the amplitude
concentrated in the |0 . . . 0〉 state and to
iteratively move amplitude up the lattice
from sets to supersets and away from sets
that violate the constraints. Note that this
algorithm begins differently than Shor’s
algorithm and Grover’s algorithm, which
both begin by computing a function on a
superposition of all the input values at
once.

Hogg gives two ways [Hogg 1996; 1998]
of constructing a unitary matrix for
moving amplitude up the lattice. We will
describe both methods, and then describe

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 327

Fig. 5. Lattice of variable assignments in ket form.

how he moves amplitude away from bad
sets.

Moving amplitude up: Method 1. There is
an obvious transformation that moves
amplitude from sets to supersets. Any
amplitude associated to the empty set is
evenly distributed among all sets with
a single element. Any amplitude associ-
ated to a set with a single element is
evenly distributed among all two-element
sets that contain that element and so
on. For the lattice of a three element
set

We want to transform

|000〉 → 1/
√

3(|001〉 + |010〉 + |100〉
|001〉 → 1/

√
3(|011〉 + |110〉 + |101〉

. . .

The complete matrix for this transforma-
tion looks like (as usual the basis vectors
are ordered according to their binary rep-
resentation)





0 0 0 0 0 0 0 1
1√
3

0 0 0 0 0 0 0
1√
3

0 0 0 0 0 0 0
0 1√

2
1√
2

0 0 0 0 0
1√
3

0 0 0 0 0 0 0
0 1√

2
0 0 1√

2
0 0 0

0 0 1√
2

0 1√
2

0 0 0
0 0 0 1 0 1 1 0





Unfortunately this transformation is
not unitary. Hogg [1996] uses the fact that
the closest (in a suitable metric) unitary
matrix UM to an arbitrary matrix M can
be found using M ’s singular value decom-
position M = U DV T , where D is a diago-
nal matrix and U and V are unitary ma-
trices. The product UM = U V T gives the
closest unitary matrix to M . Provided that
UM is sufficiently close to M , UM will be-
have in a similar way to M and will there-
fore do a reasonably job of moving ampli-
tude from sets to their supersets.

Moving amplitude up: Method 2. The sec-
ond approach [Hogg 1998] uses the Walsh–
Hadamard transformation. Hogg assumes
that the desired matrix has form W DW ,
where W is the Walsh–Hadamard trans-
formation and D is a diagonal matrix
whose entries depend only on the size of
the sets. Hogg calculates the entries for D
that maximize the movement of amplitude
from a set to its supersets. This calculation
exploits the property

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

328 E. Rieffel and W. Polak

Wrs = 1√
N

(−1)|r·s| = 1√
N

(−1)|r∩s|

shown in Section 7.2.1.

Moving amplitude away from bad sets. To
effect moving amplitude away from sets
that violate the constraints, Hogg suggests
adjusting the phases of the sets, depend-
ing on the extent to which they violate the
constraints, in such a way that the am-
plitude distributed to sets that have bad
subsets cancels, whereas the amplitude
distributed to sets from all good subsets
adds. Different choices here will work
more or less effectively depending on the
particular problem. One choice he sug-
gests is inverting the phase of all bad
sets which will result in some cancela-
tion in the amplitude of supersets be-
tween the amplitude coming from good
subsets and bad subsets. This phase in-
version can be done as in Grover’s al-
gorithm (Section 7.1.2) with a P that
tests whether a given state satisfies all
of the constraints or not. Another sug-
gestion is to give random phases to the
bad sets so that on average the contribu-
tion to the amplitude of a superset from
bad subsets is zero. Other choices are
possible.

Because the canceling resulting from
the phase changes varies from problem
to problem, the probability of obtaining
a solution is difficult to analyze. A few
small experiments have been done, and
the guess is that the cost of the search
still grows exponentially, but consider-
ably more slowly than in the unstructured
case. But until sufficiently large quantum
computers are built or better techniques
for analyzing such algorithms are found,
the efficiency cannot be determined for
sure.

8. QUANTUM ERROR CORRECTION

One fundamental problem in building
quantum computers is the need to isolate
the quantum state. An interaction of parti-
cles representing qubits with the external
environment disturbs the quantum state
and causes it to decohere, or transform

in an unintended and often nonunitary
fashion.

Steane [1998] estimates that the deco-
herence of any system likely to be built
is 107 times too large to be able to run
Shor’s algorithm as it stands on a 130-digit
number. However, adding error correction
algorithms to Shor’s algorithm mitigates
the effect of decoherence, making it again
look possible that a system could be built
on which Shor’s algorithm could be run for
large numbers.

On the surface, quantum error correc-
tion is similar to classical error correct-
ing codes in that redundant bits are used
to detect and correct errors, but the sit-
uation for quantum error correction is
somewhat more complicated than in the
classical case, since we are not deal-
ing with binary data but with quantum
states.

Quantum error correction must recon-
struct the exact encoded quantum state.
Given the impossibility of cloning or copy-
ing the quantum state, this reconstruction
appears harder than in the classical case.
However, it turns out that classical tech-
niques can be modified to work for quan-
tum systems.

8.1. Characterization of Errors

In the following it is assumed that all er-
rors are the result of quantum interaction
between a set of qubits and the environ-
ment. The possible errors for each single
qubit considered are linear combinations
of no errors (I), bit flip errors (X), phase
errors (Z), and bit flip phase errors (Y).
A general single bit error is thus a trans-
formation e1 I + e2 X + e3Y + e4 Z . Interac-
tion with the environment transforms sin-
gle qubits according to

|ψ〉 → (e1 I + e2 X + e3Y + e4 Z)|ψ〉

=
∑

i

ei Ei|ψ〉.

For the general case of quantum regis-
ters, possible errors are expressed as lin-
ear combinations of unitary error opera-
tors Ei. These could be combinations of
single-bit errors, such as tensor products

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 329

of the single-bit error transformations
{I, X , Y , Z }, or more general multibit
transformations. In any case, an error can
be written as &iei Ei for some error opera-
tors Ei and coefficients ei.

8.2. Recovery of Quantum State

An error correcting code for a set of er-
rors Ei consists of a mapping C that em-
beds n data bits in n+k code bits together
with a syndrome extraction operator SC
that maps n + k code bits to the set of
indices of correctable errors Ei such that
i = SC(Ei(C(x))). If y = E j (C(x)) for some
unknown but correctable error, then er-
ror SC(y) can be used to recover a prop-
erly encoded value C(x) (i.e., E−1

SC(y)(y) =
C(x)).

Now consider the case of a quantum reg-
ister. First, the state of the register can
be in a superposition of basis vectors. Fur-
thermore, the error can be a combination
of correctable error operators Ei. It turns
out that it is still possible to recover the
encoded quantum state.

Given an error correcting code C with
syndrome extraction operator SC, an
n-bit quantum state |ψ〉 is encoded in
a n+ k–bit quantum state |φ〉 = C|ψ〉.
Assume that decoherence leads to an
error state &iei Ei|φ〉 for some combina-
tion of correctable errors Ei. The origi-
nal encoded state |φ〉 can be recovered as
follows:

1. Apply the syndrome extraction opera-
tor SC to the quantum state padded
with sufficient |0〉 bits:

SC

(
∑

i

ei Ei|φ〉
)

⊗ |0〉

=
∑

i

ei(Ei|φ〉 ⊗ |i〉).

Quantum parallelism gives a superpo-
sition of different errors each associated
with their respective error index i.

2. Measure the |i〉 component of the result.
This yields some (random) value i0 and
projects the state to

Ei0 |φ, i0〉

3. Apply the inverse error transformation
E−1

i0 to the first n + k qubits of Ei0 |φ, i0〉
to get the corrected state |φ〉.

Note that Step 2 projects a superposi-
tion of multiple error transformations into
a single error. Consequently, only one in-
verse error transformation is required in
Step 3.

8.3. Error Correction Example

Consider the trivial error correcting code
C that maps |0〉 → |000〉 and |1〉 → |111〉.
C can correct single bit flip errors

E = {I⊗I⊗I, X ⊗I⊗I, I⊗X ⊗I, I⊗I⊗X }.

The syndrome extraction operator is

S : |x0, x1, x2, 0, 0, 0〉 → |x0, x1, x2, x0

XOR x1, x0 XOR x2, x1XOR x2〉,

with the corresponding error correction
operators shown in the table. Note that
Ei = E−1

i for this example.

Bit flipped Syndrome Error correction
none |000〉 none

0 |110〉 X ⊗ I ⊗ I
1 |101〉 I ⊗ X ⊗ I
2 |011〉 I ⊗ I ⊗ X

Consider the quantum bit |ψ〉 = 1√
2
(|0〉−

|1〉), which is encoded as

C|ψ〉 = |φ〉 = 1√
2

(|000〉 − |111〉),

and the error

E = 4
5

X ⊗ I ⊗ I + 3
5

I ⊗ X ⊗ I.

The resulting error state is

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

330 E. Rieffel and W. Polak

E|φ〉 =
(

4
5

X ⊗ I ⊗ I + 3
5

I ⊗ X ⊗ I
)

×
(

1√
2

(|000〉 − |111〉)
)

= 4
5

X ⊗ I ⊗ I
(

1√
2

(|000〉 − |111〉)
)

+ 3
5

I ⊗ X ⊗ I
(

1√
2

(|000〉 − |111〉)
)

= 4
5
√

2
X ⊗ I ⊗ I (|000〉 − |111〉)

+ 3
5
√

2
I ⊗ X ⊗ I (|000〉 − |111〉)

= 4
5
√

2
(|100〉 − |011〉)

+ 3
5
√

2
(|010〉 − |101〉).

Next apply the syndrome extraction to
(E|φ〉) ⊗ |000〉 as follows:

SC((E|φ〉) ⊗ |000〉)

= SC(
4

5
√

2
(|100000〉 − |011000〉)

+ 3
5
√

2
(|010000〉 − |101000〉))

= 4
5
√

2
(|100110〉 − |011110〉)

+ 3
5
√

2
(|010101〉 − |101101〉)

= 4
5
√

2
(|100〉 − |011〉) ⊗ |110〉

+ 3
5
√

2
(|010〉 − |101〉) ⊗ |101〉.

Measuring the last three bits of this state
yields either |110〉 or |101〉. Assuming the
measurement produces the former, the
state becomes

1√
2

(|100〉 − |011〉) ⊗ |110〉.

The measurement has the almost mag-
ical effect of causing all but one summand
of the error to disappear. The remaining

part of the error can be removed by ap-
plying the inverse error operator X ⊗ I ⊗
I , corresponding to the measured value
|110〉, to the first three bits, to produce

1√
2

(|000〉 − |111〉) = C|ψ〉 = |φ〉.

9. CONCLUSIONS

Quantum computing is a new, emerging
field that has the potential to dramatically
change the way we think about computa-
tion, programming, and complexity. The
challenge for computer scientists and oth-
ers is to develop new programming tech-
niques appropriate for quantum comput-
ers. Quantum entanglement and phase
cancellation introduce a new dimension to
computation. Programming no longer con-
sists of merely formulating step-by-step
algorithms but requires new techniques of
adjusting phases and mixing and diffusing
amplitudes to extract useful output.

We have tried to give an accurate
account of the state-of-the-art of quan-
tum computing for computer scientists
and other nonphysicists. We have de-
scribed some of the quantum mechani-
cal effects, such as the exponential state
space, the entangled states, and the lin-
earity of quantum state transformations,
that make quantum parallelism possi-
ble. Even though quantum computations
must be linear and reversible, any clas-
sical algorithm can be implemented on a
quantum computer. But the real power of
these new machines, the exponential par-
allelism, can only be exploited using new,
innovative programming techniques. Peo-
ple have only recently begun to research
such techniques.

We have described Shor’s polynomial-
time factorization algorithm, which stim-
ulated the field of quantum computing.
Given a practical quantum computer,
Shor’s algorithm would make many
present cryptographic methods obsolete.
Grover’s search algorithm, while only pro-
viding a polynomial speed-up, proves that
quantum computers are strictly more pow-
erful than classical ones. Even though

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 331

Grover’s algorithm has been shown to be
optimal, there is hope that faster algo-
rithms can be found by exploiting prop-
erties of the problem structure. We have
described one such approach taken by
Hogg.

There are a few other known quantum
algorithms that we did not discuss. Jones
and Mosca [1998] describe the implemen-
tation on a 2-bit quantum computer of
a constant time algorithm [Deutsch and
Jozsa 1992] that can distinguish whether
a function is balanced or constant. Grover
[1998] describes an efficient algorithm for
estimating the median of a set of values
and both Grover [1998] and Terhal and
Smolin [1997], using different methods,
can solve the coin weighing problem in a
single step.

Beyond these algorithms not much more
is known about what could be done with
a practical quantum computer. It is an
open question whether or not we can
find quantum algorithms that provide ex-
ponential speed-up for problems other
than factoring. There is some speculation
among physicists that quantum transfor-
mations might be slightly nonlinear. So
far all experiments that have been done
are consistent with the standard linear
quantum mechanics, but a slight nonlin-
earity is still possible. Abrams and Lloyd
[1998] show that even a very slight nonlin-
earity could be exploited to solve all NP-
hard problems on a quantum computer in
polynomial time. This result further high-
lights the fact that computation is funda-
mentally a physical process, and that what
can be computed efficiently may depend on
subtle issues in physics.

The unique properties of quantum com-
puters give rise to new kinds of complex-
ity classes. For instance, BQP is the set
of all languages accepted by a quantum
Turing machine in polynomial time with
bounded probability of error. Details of
the extensive research done in the field
of quantum complexity theory is beyond
the scope of this paper. The interested
reader may start by consulting Bennett
et al. [1997] and Watrous [1998] respec-
tively for analyses of time and space com-
plexity of quantum computation. Williams

and Clearwater [1998] contains an in-
troduction to early results in quantum
complexity.

Of course, there are daunting physical
problems that must be overcome if any-
one is ever to build a useful quantum
computer. Decoherence, the distortion of
the quantum state due to interaction with
the environment, is a key problem. A big
breakthrough for dealing with decoher-
ence came from the algorithmic, rather
than the physical, side of the field with the
development of quantum error correction
techniques. We have described some of the
principles involved. Further advances in
quantum error correction and the devel-
opment of robust algorithms will be as im-
portant for the development of practical
quantum computers as advances in the
hardware side.

9.1. Further Reading

Andrew Steane’s survey article “Quan-
tum Computing” [Steane 1998] is aimed at
physicists. We recommend reading his pa-
per for his viewpoint on this subject, par-
ticularly for his description of connections
between information theory and quantum
computing and for his discussion of er-
ror correction, of which he was one of the
main developers. He also has an overview
of the physics involved in actually build-
ing quantum computers and a survey of
what had been done up to July 1997. His
article contains a more detailed history
of the ideas related to quantum comput-
ing than the present paper, and has more
references as well. Another shorter and
very readable tutorial can be found in
Berthiaume [1997].

Richard Feynman’s Lectures on Compu-
tation [Feynman 1996] contains a reprint
of the lecture “Quantum Mechanical Com-
puters” [Feynman 1985], which began the
whole field. It also discusses the thermo-
dynamics of computations, which is closely
tied with reversible computing and infor-
mation theory.

Colin Williams and Scott Clearwater’s
book Explorations in Quantum Comput-
ing [Williams and Clearwater 1998] comes
with software, in the form of Mathematica

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

332 E. Rieffel and W. Polak

notebooks, that simulates some quantum
algorithms such as Shor’s algorithm.

The second half of the October 1997 is-
sue of the SIAM Journal of Computing
contains six seminal articles on quantum
computing, including four we have already
cited [Bennett et al. 1997; Bernstein and
Vazirani 1997; Shor 1997; Simon 1997].

Most of the articles referenced in this
paper, and many more, can be found at
the Los Alamos preprint server: http://
xxx.lanl.gov/archive/quant-ph. Links
to research projects and other informa-
tion about quantum computing can be
found on our web site http://www.fxpal.
xerox.com/Quantum Computing.

APPENDIX

A. TENSOR PRODUCTS

The tensor product (⊗) of a n-dimensional
and a k-dimensional vector is a nk-
dimensional vector. Similarly, if A and
B are transformations on n-dimensional
and k-dimensional vectors respectively,
then A ⊗ B9 is a transformation on nk-
dimensional vectors.

The exact mathematical details of ten-
sor products are beyond the scope of this
paper (see Hungerford [1974] for a com-
prehensive treatment). For our purposes
the following algebraic rules are sufficient
to calculate with tensor products. For ma-
trices A, B, C, D, U , vectors u, x, y , and
scalars a, b, the following hold:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD
(A ⊗ B)(x ⊗ y) = Ax ⊗ B y

(x + y) ⊗ u = x ⊗ u + y ⊗ u
u ⊗ (x + y) = u ⊗ x + u ⊗ y

ax ⊗ by = ab(x ⊗ y)
(

A B
C D

)
⊗ U =

(
A ⊗ U B ⊗ U
C ⊗ U D ⊗ U

)
,

which is specialized for scalars a, b, c, d to
(

a b
c d

)
⊗ U =

(
aU bU
cU dU

)
.

9 Technically, this is a right Kronecker product.

The conjugate transpose distributes
over tensor products; that is,

(A ⊗ B)∗ = A∗ ⊗ B∗.

A matrix U is unitary if its conjugate
transpose is its inverse: U ∗U = I.

The tensor product of several matrices
is unitary if and only if each one of the
matrices is unitary up to a constant. Let
U = A1 ⊗ A2 ⊗· · ·⊗ An. Then U is unitary
if A∗

i Ai = ki I and (iki = 1.

U ∗U =
(

A∗
1 ⊗ A∗

2 ⊗ · · · ⊗ A∗
n
)

× (A1 ⊗ A2 ⊗ · · · ⊗ An)

= A∗
1 A1 ⊗ A∗

2 A2 ⊗ · · · ⊗ A∗
n An

= k1 I ⊗ · · · ⊗ knI

= I

where each I refers to the identity matrix
of appropriate dimension.

For example, the distributive law allows
computations of the form:

(a0|0〉 + b0|1〉) ⊗ (a1|0〉 + b1|1〉)

= (a0|0〉 ⊗ a1|0〉) + (b0|1〉 ⊗ a1|0〉)

+ (a0|0〉 ⊗ b1|1〉) + (b0|1〉 ⊗ b1|1〉)

= a0a1((|0〉 ⊗ |0〉) + b0a1(|1〉 ⊗ |0〉)

+ a0b1(|0〉 ⊗ |1〉) + b0b1(|1〉 ⊗ |1〉)

= a0a1(|00〉 + b0a1|10〉 + a0b1|01〉

+ b0b1|11〉

B. CONTINUED FRACTIONS AND
EXTRACTING THE PERIOD FROM THE
MEASUREMENT IN SHOR’S ALGORITHM

In the general case where the period r does
not divide 2m; the value v measured in
Step 4 of Shor’s algorithm will be, with
high probability, close to some multiple of
2m

r , say j 2m

r .
The aim is to extract the period r from

the measured value v. Shor shows that,
with high probability, v is within 1

2 of some
j 2m

r . Thus

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 333

∣∣∣∣v − j
2m

r

∣∣∣∣ <
1
2

for some j , which implies that

∣∣∣∣
v

2m − j
r

∣∣∣∣ <
1

2 · 2m <
1

2M 2 .

The difference between two distinct frac-
tions p

q and p′

q′ with denominators less than
M is bounded

∣∣∣∣
p
q

− p′

q′

∣∣∣∣ =
∣∣∣∣

pq′ − p′q
qq′

∣∣∣∣ >
1

M 2 .

Thus there is at most one fraction p
q with

denominator q < M such that | v
2m − p

q | <
1

M 2 . In the high-probability case that v is
within 1

2 of j 2m

r , this fraction will be j
r .

The unique fraction with denominator
less than M that is within 1

M 2 of v
2m can

be obtained efficiently from the continued
fraction expansion of v

2m as follows. Using
the sequences

a0 =
[

v
2m

]

ε0 = v
2m − a0

an =
[

1
εn−1

]

εn = 1
εn−1

− an

p0 = a0

p1 = a1a0 + 1
pn = an pn−1 + pn−2

q0 = 1
q1 = a1

qn = anqn−1 + qn−2,

compute the first fraction pn
qn

such that
qn < M ≤ qn+1. See any standard num-
ber theory text, such as Hardy and Wright
[1979], for why this procedure works.

In the high probability case when v
2m is

within 1
M 2 of a multiple j

r of 1
r , the frac-

tion obtained from the above procedure is

j
r , because it has denominator less than
M . We take the denominator q of the ob-
tained fraction as our guess for the period,
which will work when j and r are rela-
tively prime.

ACKNOWLEDGMENTS

The authors would like to thank Tad Hogg and
Carlos Mochon for many enjoyable conversations
about quantum computing and for their feedback
on an earlier draft of this paper. We are also grate-
ful to Lee Corbin, David Goldberg, Lov Grover,
Norman Hardy, Vaughan Pratt, Marc Rieffel, and
the anonymous referees for detailed comments on
earlier drafts of this paper. Finally, we would like
to thank FXPAL for enthusiastically supporting this
work.

REFERENCES
ABRAMS, D. S. AND LLOYD, S. 1998. Nonlinear quan-

tum mechanics implies polynomial-time solution
for NP-complete and #p problems. Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9801041.

BARENCO, A., BENNETT, C. H., CLEVE, R., DIVINCENZO,
D. P., MARGOLUS, N. H., SHOR, P. W., SLEATOR,
T., SMOLIN, J. A., AND WEINFURTER, H. 1995.
Elementary gates for quantum computation.
Physical Review A 52, 5, 3457–3467. Preprint at
Los Alamos Physics Preprint Archive, http://
xxx.lanl.gov/abs/quant-ph/9503016 and at
http://vesta.physics.ucla.edu/cgi-bin/
uncompress ps cgi?torgats1.ps.

BENNETT, C. H. 1992. Quantum cryptography using
any two nonorthogonal states. Physical Review
Letters 68, 3121–3124.

BENNETT, C. H., BERNSTEIN, E., BRASSARD, G., AND

VAZIRANI, U. V. 1997. Strengths and weak-
nesses of quantum computing. Society for In-
dustrial and Applied Mathematics Journal
on Computing 26, 5, 1510–1523. Preprint
at Los Alamos Physics Preprint Archive,
http://xxx.lanl.gov/abs/quant-ph/9701001.

BENNETT, C. H. AND BRASSARD, G. 1987. Quantum
public key distribution reinvented. SIGACT
News (ACM Special Interest Group on Automata
and Computability Theory) 18, 51–53.

BENNETT, C. H., BRASSARD, G., AND EKERT, A. K.
1992. Quantum cryptography. Scientific Amer-
ican 267, 4 (Oct.), 50.

BERNSTEIN, E. AND VAZIRANI, U. V. 1997. Quantum
complexity theory. Society for Industrial and Ap-
plied Mathematics Journal on Computing 26, 5,
1411–1473. A preliminary version of this paper
appeared in the Proceedings of the 25th Associ-
ation for Computing Machinery Symposium on
the Theory of Computing.

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

334 E. Rieffel and W. Polak

BERTHIAUME. 1997. Quantum computation. In ALAN

L. SELMAN, ED., Complexity Theory Retrospective,
In Honor of Juris Hartmanis on the Occasion of
His Sixtieth Birthday, (July 5, 1988), Vol. 2, 23–
51.

BIRON, D., BIHAM, O., BIHAM, E., GRASSEL, M., AND LI-
DAR, D. A. 1998. Generalized grover search al-
gorithm for arbitrary initial amplitude distri-
bution. Los Alamos Physics Preprint Archive,
http://xxx.lanl.gov/abs/quant-ph/9801066.

BOSCHI, D., BRANCA, S., MARTINI, F. D., HARDY, L., AND

POPESCU, S. 1998. Experimental realization of
teleporting an unknown pure quantum state via
dual classical and einstein-podolski-rosen chan-
nels. Physical Review Letters 80, 1121–1125.

BOUWMEESTER, D., PAN, J.-W., MATTLE, K., EIBL,
M., WEINFURTER, H., AND ZEILINGER, A.
1997. Experimental quantum teleportation.
Nature 390, 575.

BOYER, M., BRASSARD, G., HøYER, P., AND TAPP, A. 1996.
Tight bounds on quantum search. In Proceed-
ings of the Workshop on Physics of Computation:
PhysComp ’96 (Los Alamitos, CA, 1996), 36–43.
Institute of Electrical and Electronic Engineers
Computer Society Press. Preprint at Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9605034.

BRASSARD, G., HøYER, P., AND TAPP, A. 1998.
Quantum counting. Preprint at Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9805082.

CERF, N. J., GROVER, L. K., AND WILLIAMS, C. P. 1998.
Nested quantum search and np-complete prob-
lems. Preprint at Los Alamos Physics Preprint
Archive, http://xxx.lanl.gov/abs/
quant-ph/9806078.

CIRAC, J. I. AND ZOLLER, P. 1995. Quantum compu-
tations with cold trapped ions. Physical Review
Letters 74, 4091–4094.

CORY, D. G., MASS, W., PRICE, M., KNILL, E.,
LAFLAMME, R., ZUREK, W. H., HAVEL, T. F., AND

SOMAROO, S. S. 1998. Experimental quantum
error correction. Preprint at Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/
quant-ph/9802018.

DEUTSCH, D. 1985. Quantum theory, the Church-
Turing principle and the universal quantum
computer. Proceedings of the Royal Society of
London Series A A400, 97–117.

DEUTSCH, D. AND JOZSA, R. 1992. Rapid solution of
problems by quantum computation. Proceedings
of the Royal Society of London Series A A439,
553–558.

DIRAC, P. 1958. The Principles of Quantum Mechan-
ics (4th ed.). Oxford University Press.

EKERT, A. K., RARITY, J., TAPSTER, P., AND PALMA, G.
1992. Practical quantum cryptography based
on two-photon interferometry. Physical Review
Letters 69, 1293–1295.

FEYNMAN, R. 1982. Simulating physics with com-
puters. International Journal of Theoretical
Physics 21, 6&7, 467–488.

FEYNMAN, R. 1985. Quantum mechanical comput-
ers. Optics News 11, 11–20. Also in Foundations
of Physics, 16(6), 507–531, 1986.

FEYNMAN, R. 1996. In Feynman Lectures on Compu-
tation. A. J. HEY AND R. W. ALLEN EDS., Addison-
Wesley.

FEYNMAN, R. P., LEIGHTON, R. B., AND SANDS, M.
1965. Lectures on Physics, Vol. III. Addison-
Wesley.

GERSHENFELD, N. A. AND CHUANG, I. L. 1997.
Bulk spin resonance quantum computing. Sci-
ence 275, 350–356.

GREENSTEIN, G. AND ZAJONC, A. G. 1997. The Quan-
tum Challenge. Jones and Bartlett Publishers,
Sudbury, Mass.

GROVER, L. K. 1996. A fast quantum mechanical al-
gorithm for database search. In Proceedings of
the 28th Annual ACM Symposium on the The-
ory of Computing (Philadelphia, Pennsylvania,
22–24 May 1996), pp. 212–219.

GROVER, L. K. 1998. A framework for fast quan-
tum mechanical algorithms. Proceedings of the
30th Annual ACM Symposium on the The-
ory of Computing, 53–62. Preprint at Los
Alamos Physics Preprint Archive, http://xxx.
lanl.gov/abs/quant-ph/9711043.

HARDY, G. H. AND WRIGHT, E. M. 1979. An Introduc-
tion to the Theory of Numbers. Oxford University
Press.

HOGG, T. 1996. Quantum computing and phase
transitions in combinatorial search. Journal
of Artificial Intelligence Research 4, 91–
128. Preprint at Los Alamos Physics Preprint
Archive, http://xxx.lanl.gov/abs/quant-ph/
9508012.

HOGG, T. 1998. Highly structured searches with
quantum computers. Physical Review Letters 80,
2473–2473.

HUGHES, R. J., BUTTLER, W. T., KWIAT, P. G.,
LAMOREAUX, S. K., MORGAN, G. L., NORDHOLT,
J. E., AND PETERSON, C. G. 1999. Practical Quan-
tum Cryptography for Secure Free-Space Com-
munications. Preprint at Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/
quant-ph/9905009.

HUGHES, R. J., BUTTLER, W. T., KWIAT, P. G., LUTHER,
G. G., MORGAN, G. L., NORDHOLT, J. E., PETERSON,
C. G., AND SIMMONS, C. M. 1997. Secure commu-
nications using quantum cryptography. In S. P.
HOTALING AND A. R. PIRICH EDS., Photonic Quan-
tum Computing, Vol. 3076, 2–11.

HUNGERFORD, T. A. 1974. Algebra. Springer Verlag,
New York, Heidelberg, Berlin.

JONES, J. A. AND MOSCA, M. 1998. Implementation
of a quantum algorithm on a nuclear mag-
netic resonance quantum computer. Journal of
Chemical Physics 109, 5, 1648–1653. Preprint
at Los Alamos Physics Preprint Archive,
http://xxx.lanl.gov/abs/quant-ph/9801027.

LAFLAMME, R., KNILL, E., ZUREK, W., CATASTI, P., AND

MARIAPPAN, S. 1997. NMR GHZ. Los Alamos

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

Introduction to Quantum Computing 335

Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9709025.

LENSTRA, A. AND LENSTRA, H. EDS. 1993. The Devel-
opment of the Number Field Sieve, Vol. 1554 of
Lecture Notes in Mathematics. Springer Verlag.

LIBOFF, R. L. 1997. Introductory Quantum Mechan-
ics (3rd ed.). Addison-Wesley, Reading, Mass.

LO, H.-K. AND CHAU, H. F. 1999. Unconditional secu-
rity of quantum key distribution over arbitrarily
long distances. Science 283, 2050–2056.

MAYERS, D. 1998. Unconditional Security in Quan-
tum Cryptography. Preprint at Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9802025.

NIELSEN, M. A., KNILL, E., AND LAFLAMME, R. 1998.
Complete Quantum Teleportation using Nuclear
Magnetic Resonance. Preprint at Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9811020.

SCHULMAN, L. J. AND VAZIRANI, U. 1998. Scalable
NMR Quantum Computation. Los Alamos
Physics Preprint Archive, http://xxx.lanl.
gov/abs/quant-ph/9804060.

SHOR, P. W. 1994. Algorithms for quantum compu-
tation: Discrete log and factoring. In Proceedings
of the 35th Annual Symposium on Foundations
of Computer Science (Nov.), 124–134. Institute
of Electrical and Electronic Engineers Computer
Society Press. ftp://netlib.att.com/netlib/
att/math/shor/quantum.algorithms.ps.Z.

SHOR, P. W. 1997. Polynomial-time algorithms for
prime factorization and discrete logarithms on
a quantum computer. Society for Industrial
and Applied Mathematics Journal on Comput-
ing 26, 5, 1484–1509. Expanded version of Shor
[1994].

SIMON, D. R. 1997. On the power of quantum compu-
tation. Society for Industrial and Applied Math-
ematics Journal on Computing 26, 5, 1474–
1483. A preliminary version of this paper ap-

peared in the Proceedings of the 35th Annual
Symposium on Foundations of Computer Sci-
ence.

STEANE, A. 1996. The Ion Trap Quantum Informa-
tion Processor. Los Alamos Physics Preprint
Archive, http://xxx.lanl.gov/abs/quant-ph/
9608011.

STEANE, A. 1998. Quantum computing. Reports on
Progress in Physics 61, 2, 117–173. Preprint at
Los Alamos Physics Preprint Archive, http://
xxx.lanl.gov/abs/quant-ph/9708022.

TERHAL, B. M. AND SMOLIN, J. A. 1997. Single Quan-
tum Querying of a Database. Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/
quant-ph/9705041.

VANDERSYPEN, L. M. K., YANNONI, C. Y., SHERWOOD,
M. H., AND CHUANG, I. L. 1999. Realization
of Effective Pure States for Bulk Quantum
Computation. Preprint at Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/
quant-ph/9905041.

VEDRAL, V., BARENCO, A., AND EKERT, A. K. 1996.
Quantum Networks for Elementary Arithmetic
Operations. Physical Review A. Preprint at Los
Alamos Physics Preprint Archive, http://xxx.
lanl.gov/abs/quant-ph/9511018.

WATROUS, J. 1998. Relationships between quan-
tum and classical space-bounded complexity
classes. In 13th Annual IEEE Conference on
Computational Complexity (June 1998), 210–
227.

WILLIAMS, C. P. AND CLEARWATER, S. H. 1998. Explo-
rations in Quantum Computing. Telos, Springer-
Verlag.

WOOTTERS, W. K. AND ZUREK, W. H. 1982. A single
quantum cannot be cloned. Nature 299, 802.

ZALKA, C. 1997. Grover’s Quantum Searching
Algorithm is Optimal. Los Alamos Physics
Preprint Archive, http://xxx.lanl.gov/abs/
quant-ph/9711070.

Accepted September 1999

ACM Computing Surveys, Vol. 32, No. 3, September 2000.

