LECTURE 22:
K-MEANS AND HIERARCHICAL CLUSTERING

December 4, 2017
SDS 293: Machine Learning
Announcements 1/2

Consider submitting final write-ups to the Undergraduate Statistics Project Competition!

Deadline: December 22, 2017
www.causeweb.org/usproc
Announcements 2/2

One last change to Final Presentations:

December 13th
9:00 - 10:20am
Ford Hall Atrium
Final Project Deliverables

✓ Nov. 8th - FP1: Data Appendix
✓ Nov. 27th – FP2: Initial Model

• Dec. 6th (\leftarrow new date!) – FP3: Revised Model

• Dec 13th – Final Project Reception
 (posters due 5pm Friday Dec. 8th if you want Jordan to print it for you)

• Dec. 22nd - FP5: Final Write-Up
Outline

- Supervised vs. unsupervised learning
- Clustering methods
 - K-means
 - Hierarchical
- Lab
Recap

avg(Pr(default)) = 0.33
Supervised methods

- **Big idea**: estimate the value of the response using some function of the predictors

\[\hat{y} = f(X) \]
Supervised methods

- When we know the **true value** of the response, we can check our work by seeing how well our model predicts it
 - cross-validation
 - independent test set
 - adjusted R^2, Cp, AIC, BIC, etc.

When we **don’t have a response**, things get a little messier…
Unsupervised methods

- **Goal**: look for structure / patterns in the data *without* having a clear goal (i.e. predict y from X)

- **Examples**:
 - Shoppers with similar browsing and purchase histories
 - Subgroups among tissue samples from 100 breast cancer patients
 - Individuals with similar click patterns when using a search engine
Discussion

• **Question:** what makes this kind of analysis challenging?
• **Answer:** tends to be more subjective, since we don’t have a clear measure of “success”

Unsupervised learning is often performed as part of exploratory data analysis.
Clustering

• **Big idea**: partition observations into distinct groups s.t.
 - observations *within* each group are similar to each other
 - observations in *different* groups are different from each other

• **What we need**: a clear idea of what it means for two or more observations to be *similar* or *different* *

this is usually a domain-specific consideration that must be made based on additional knowledge of the data
K-means clustering

- **Goal**: partition* the observations into a **pre-specified** number of groups

*each observation is assigned to **exactly one** group
K-means clustering

- **Big idea**: good clustering = small *within-cluster variation*

Mathematically, we want to solve the problem:

$$
\min_{C_1, \ldots, C_K} \left\{ \sum_{k=1}^{K} W(C_k) \right\}
$$

- We often use **Euclidean distance**:

$$
W(C_k) = \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2
$$

 Average over all pairs of obs. in cluster **Euclidean distance**
Discussion

• Question: what’s the problem?

• Answer: there are $O(K^n)$ ways to partition n observations into K groups: a huge number unless K and n are tiny!

Luckily, a very simple algorithm can be shown to provide a local optimum*
K-means algorithm

1. Randomly assign each observation to a cluster.

2. Iterate until the cluster assignments stop changing:
 a) Compute the vector of the p feature means for the observations in the k^{th} cluster (this is called the centroid)
 b) Assign each observation to the cluster whose centroid is closest (where “closest” is defined using Euclidean distance)
Example: $k=3$
Example: k=3

Randomly assign clusters
Example: $k=3$

Compute centroids
Example: \(k=3 \)

Reassign clusters
Example: $k=3$

Recompute centroids
Example: k=3

Repeat until clusters stabilize
Discussion

• **Question:** this process is guaranteed to decrease the cluster variation at each step - why?

• **Hint:** the following identify is helpful:

\[
\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{kj})^2
\]

the **cluster means** are the constants that minimize the sum-of-squared deviations, so reassigning can only help!
K-means clustering

- The K-means algorithm finds a **local** rather than a **global optimum**

- The results obtained will depend on the initial (random) assignment

- **Important**: run the algorithm multiple times from different initial configurations to avoid getting “stuck”
Discussion

• **Question:** so what’s the problem with k-means?
• **Answer:** …how do we pick the right number of clusters?
 – Could do a parameter sweep
 – Maybe we have domain knowledge
Hierarchical clustering

- **Big idea**: adapt tree-based methods to perform clustering **without** having to pre-specify # of clusters
Dendrograms

Leaves = individual observations

Euclidean distance

As we move upward, we group observations that are sufficiently similar

Less similar

More similar
Dendrograms

Important: proximity along horizontal axis doesn’t tell us anything about similarity!

Similarity of observations can be inferred based on the location they first fuse on the vertical axis.
Hierarchical clustering

- To go from a dendrogram to actual clusters, just cut!

- The **height** of the cut serves the same role as the K in K-means clustering: it controls the number of clusters
Building the dendrogram

- Begin with n observations and a measure of all the \(\binom{n}{2} \) pairwise distances. Treat each observation as its own cluster.
- For $i = n, n-1, \ldots, 2$:
 - Examine all pairwise inter-cluster distances and identify the pair of clusters that are most similar.
 - Fuse these two clusters. The distances between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
 - Compute the new pairwise inter-cluster distances.
Discussion

• **Question:** what’s missing?
• **Answer:** how do we measure distance between clusters?
Linkage types

- **Complete**: maximal intercluster distance (all pairs)
- **Single**: minimal intercluster distance (all pairs)
- **Average**: mean intercluster distance (all pairs)
- **Centroid**: distance between cluster means (inexpensive, but can result in problematic inversions)

Average, complete = generally more balanced
Linkage types

Average Linkage

Complete Linkage

Single Linkage
Practical considerations: distance measure

- The choice of **distance measure** is very important, as it has a strong effect on the resulting clusters
- Pay attention to the **type of data** being clustered and the **question** you’re answering
- Example:
Online shopping

<table>
<thead>
<tr>
<th>Shopper</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bob</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cindy</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Practical considerations: scaling

• Question: should we scale the data to have standard deviation 1 before measuring similarity?

• If so, then each variable will be given equal importance when clustering is performed

• Example:
Small decisions, big consequences

• Each of these decisions can have a **large impact** on the results obtained

• In practice, we usually try **several different choices**, and look for the one that seems the most useful

• Any solution that exposes **some interesting aspect** of the data should be considered!
Lab: clustering

• To do today’s lab in R: **broom** (just for data wrangling)
• To do today’s lab in python: **scipy**
• Instructions and code:

 [course website]/labs/lab16-r.html

 [course website]/labs/lab16-r.html
• Full version can be found beginning on p. 404 of ISLR
• If you finish early, take some time to work on your project!
Coming up

• A8 out tonight

• Wednesday 12/6:
 – Jordan in NC
 – Guest lecture: Neural Networks (G. Grinstein)
 – FP3 due

• Monday 12/11:
 – Final lecture: open research questions in ML
 – A8 due

• Wednesday 12/13: FINAL PROJECT RECEPTION