LECTURE 22:

K-MEANS AND HIERARCHICAL CLUSTERING

December 4, 2017

SDS 293: Machine Learning

Announcements 1/2

Consider submitting final write-ups to the Undergraduate Statistics Project Competition!

Deadline: December 22, 2017 www.causeweb.org/usproc

Announcements 2/2

One last change to Final Presentations:

December 13th

9:00 - 10:20am

Ford Hall Atrium

Final Project Deliverables

- ✓Nov. 8th FP1: Data Appendix
- ✓ Nov. 27th FP2: Initial Model
- Dec. 6th (← new date!) FP3: Revised Model
- Dec 13th Final Project Reception
 (posters due 5pm Friday Dec. 8th if you want Jordan to print it for you)
- Dec. 22nd FP5: Final Write-Up

Outline

- Supervised vs. unsupervised learning
- Clustering methods
 - K-means
 - Hierarchical
- Lab

Recap

Supervised methods

 Big idea: estimate the value of the response using some function of the predictors

$$\hat{y} = f(X)$$

Supervised methods

- When we know the true value of the response, we can check our work by seeing how well our model predicts it
 - cross-validation
 - independent test set
 - adjusted R², Cp, AIC, BIC, etc.

Expert

When we don't have a response,

things get a little messier...

Unsupervised methods

 Goal: look for structure / patterns in the data without having a clear goal (i.e. predict y from X)

Examples:

- Shoppers with similar browsing and purchase histories
- Subgroups among tissue samples from 100 breast cancer patients
- Individuals with similar click patterns when using a search engine

Discussion

- Question: what makes this kind of analysis challenging?
- Answer: tends to be more subjective, since we don't have a clear measure of "success"

Unsupervised learning is often performed as part of exploratory data analysis

Clustering

- Big idea: partition observations into distinct groups s.t.
 - observations within each group are similar to each other
 - observations in **different** groups are different from each other
- What we need: a clear idea of what it means for two or more observations to be similar or different*

K-means clustering

 Goal: partition* the observations into a pre-specified number of groups

K-means clustering

- Big idea: good clustering = small within-cluster variation
- Mathematically, we want to solve the problem:

$$\min_{C_1,\ldots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

We often use Euclidean distance:

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$$
Average over all pairs of obs.
in cluster

Euclidean distance in cluster

Discussion

- Question: what's the problem?
- **Answer:** there are $O(K^n)$ ways to partition n observations into K groups: a huge number unless K and n are tiny!

Luckily, a very simple algorithm can be shown to provide a local optimum*

K-means algorithm

- 1. Randomly assign each observation to a cluster.
- 2. Iterate until the cluster assignments stop changing:
 - a) Compute the vector of the p feature means for the observations in the k^{th} cluster (this is called the **centroid**)
 - Assign each observation to the cluster whose centroid is closest (where "closest" is defined using Euclidean distance)

Randomly assign clusters

Compute centroids

Reassign clusters

Recompute centroids

Repeat until clusters stabilize

Discussion

- Question: this process is guaranteed to decrease the cluster variation at each step - why?
- Hint: the following identify is helpful:

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2$$

the **cluster means** are the constants that minimize the sum-of-squared deviations, so reassigning can only help!

K-means clustering

- The K-means algorithm finds a local rather than a global optimum
- The results obtained will depend on the initial (random) assignment
- Important: run the algorithm multiple times from different initial configurations to avoid getting "stuck"

Discussion

- Question: so what's the problem with k-means?
- Answer: ...how do we pick the right number of clusters?
 - Could do a parameter sweep
 - Maybe we have domain knowledge

Hierarchical clustering

 Big idea: adapt tree-based methods to perform clustering without having to pre-specify # of clusters

Dendrograms

Less similar

As we move upward, we group observations that are sufficiently similar

More similar

Dendrograms

Similarity of observations can be inferred based on the location they first fuse on the **vertical axis**

Important:
 proximity along
horizontal axis doesn't
tell us anything about
 similarity!

Hierarchical clustering

To go from a dendrogram to actual clusters, just cut!

 The height of the cut serves the same role as the K in K-means clustering: it controls the number of clusters

Building the dendrogram

- Begin with n observations and a measure of all the (n choose 2) pairwise distances. Treat each observation as its own cluster.
- For i = n, n-1, ..., 2:
 - Examine all pairwise inter-cluster distances and identify the pair of clusters that are most similar.
 - Fuse these two clusters. The distances between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
 - Compute the new pairwise inter-cluster distances.

Discussion

- Question: what's missing?
- Answer: how do we measure distance between clusters?

Linkage types

- Complete: maximal intercluster distance (all pairs)
- Single: minimal intercluster distance (all pairs)
- Average: mean intercluster distance (all pairs)
- Centroid: distance between cluster means (inexpensive, but can result in problematic inversions)

Average, complete = generally more balanced

Linkage types

Practical considerations: distance measure

- The choice of distance measure is very important, as it has a strong effect on the resulting clusters
- Pay attention to the type of data being clustered and the question you're answering
- Example:

Online shopping

Shopper	Item 1	Item 2	Item 3	Item 4	
Alice	1	1	1	0	
Bob	0	1	1	1	
Cindy	1	0	0	0	

Practical considerations: scaling

- Question: should we scale the data to have standard deviation 1 before measuring similarity?
- If so, then each variable will be given equal importance when clustering is performed
- Example:

Small decisions, big consequences

- Each of these decisions can have a large impact on the results obtained
- In practice, we usually try several different choices, and look for the one that seems the most useful
- Any solution that exposes some interesting aspect of the data should be considered!

Lab: clustering

- To do today's lab in R: broom (just for data wrangling)
- To do today's lab in python: scipy
- Instructions and code:

[course website]/labs/lab16-r.html

[course website]/labs/lab16-r.html

- Full version can be found beginning on p. 404 of ISLR
- If you finish early, take some time to work on your project!

Coming up

- A8 out tonight
- Wednesday 12/6:
 - Jordan in NC
 - Guest lecture: Neural Networks (G. Grinstein)
 - FP3 due
- Monday 12/11:
 - Final lecture: open research questions in ML
 - A8 due
- Wednesday 12/13: FINAL PROJECT RECEPTION