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Announcements 2/3

FP2 feedback:

If you submitted before break, went out this morning
If you submitted after break, will be out by tomorrow

FP3 has been posted, including a detailed rubric
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Title

Authors

Introduction

RRRRR

Conclusions & Future Work

FP poster template is now
available on Moodle

You're welcome to make
changes / reformat; just
please keep it 3'x4’ portrait

Printing:
Option 1: upload PDF to Moodle
on or before ~December 7t
Option 2: arrange printing on
your own (Paradise Copies, etc.)



Outline

Maximal margin classifier

Support vector classification
2 classes, linear boundaries
2 classes, nonlinear boundaries _|
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Multiple classes
Comparison to other methods
Lab



Recap: maximal margin classifier
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Problem: sometimes we can’t be perfect...
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Recap: support vector classifier
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Bigger value = further from margin = more confident



R
Recap: support vectors
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Recap: kernel
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Big idea: using different ways of measuring “similarity”
allows you to partition the feature space in different ways



Discussion

- Question: what’s the problem?

- Answer: regardless of kernel shape, a SMV can only
divide the data into two parts... but the data in the real
world sometimes has multiple classes

So what can we do?




Goal: assign observation to 1 of 4 groups
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One-versus-one classification

Big idea: build an SVM for each pair of classes

To predict: classify each observation using all of the
(k choose 2) classifiers, keep track of how many times the
observation is assigned to each: majority wins




One-versus-all classification

Big idea: build an SVM for each class
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To predict: classify each observation using each of the
k classifiers, keep track of how confident we are of each
prediction: most confident clasS'Wins
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Quick history lesson

Mid-90s: SVMs come on the scene

Reaction: O0000000000000hh...

Good performance
“Mysterious™ felt entirely different from classical approaches
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Flashback: loss functions

Many of the methods we've seen so far take the form:

min{L(X,ya/J))/"')L (/3)}

/j’ ——

f A

“loss” “penalty”
(consequence for (consequence for
poor prediction) being complicated)

With a little manipulation, we can rewrite our SVM as:
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hinge loss
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Alas. ..

- Despite appearances, SVMs are quite closely related to logistic
regression and other classical statistical methods

- And what’s worse, most other classification methods can use
non-linear kernels, too! (recall Ch. 7...)
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SVMs vs. logistic regression loss functions
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Lab: Multiclass SVMs

To dotoday'slabin R: e1071, ROCR
To do today’s lab in python: <nothing new>

Instructions and code:

[course website]/labs/lab15-r.html

[course website]/labs/lab15-py.html

Full version can be found beginning on p. 366 of ISLR
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Coming up

Next week: unsupervised techniques



