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Announcements

• Thanks for your flexibility on Monday before break
• By popular request, today will be a split class:
- Part 1: Introduction to SVMs
- Part 2: Final Project Workshop



Outline

• Maximal margin classifier
• Support vector classification
- 2 classes, linear boundaries
- 2 classes, nonlinear boundaries

• Multiple classes
• Comparison to other methods
• Lab



Toy example

{ m-a-g-g-i-e: 6, 
c-a-r-t-t-a-r: 7 }

{ d-e-j-i-a: 5, 
t-a-n-g: 4 } { w-i-l-l: 4, 

z-a-u-b-l-e-r: 7 }

{ m-i-n-y-u-e: 6, 
d-a-i: 3 }



Maximal margin classifier

• Claim: if a separating 
hyperplane exists, 
there are infinitely 
many of them (why?)

• Big idea: pick the one 
that gives you the 
widest margin (why?)

Bigger margin = more confident



Discussion

• Question: what’s wrong with this approach?
• Answer: sometimes the margin is tiny (and therefore 

prone to overfitting), and other times the data there is no 
hyperplane that perfectly divides the data
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Support vector classifier

• Big idea: might prefer 
to sacrifice a few if it 
enables us to perform 
better on the rest

• Can allow points to 
cross the margin, or 
even be completely 
misclassified



Support vector classifier (math)

• Goal: maximize the margin M

• Subject to the following constraints:

yi β0 +β1xi1 +...+βpxip( ) ≥M
⟂ distance from the ith

obs. to the hyperplane

1−εi( )

εi ≥ 0, εi ≤C
i=1

n

∑

“slack variables”

no one gets rewarded
for being extra far 
from the margin

We only have so much 
“slack” to allocate across 

all the observations
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Support vectors

Decision rule is 
based only on the 
support vectors => 
SVC is robust to 
strange behavior 

far from the 
hyperplane!



A more general formulation

• Goal: maximize the margin M
• Subject to the following constraints:

• Fun fact: the solution to this maximization can be found using 
the inner products of the observations

yi β0 +β1xi1 +...+βpxip( ) ≥M
⟂ distance from the ith

obs. to the hyperplane

1−εi( )

εi ≥ 0, εi ≤C
i=1

n

∑



Dot product = measure of similarity

• The dot product of 2 (same-length) vectors:
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Geometric

Algebraic



Only nonzero at support vectors

A more general formulation

• We can rewrite the linear support vector classifier as:

• The dot product is just one way to measure the similarity 
• In general, we call any such similarity measure a kernel*

f x( ) = β0 + αi x ⋅ xi( )
i=1

n

∑

→ f x( ) = β0 + αi x ⋅ xi( )
i∈S
∑

f x( ) = β0 + αiK x, xi( )
i∈S
∑

*which is why SVMs and related measures are 
often referred to as “kernel methods”



Other kernels

We’ve seen a linear kernel 
(i.e. the classification 

boundary is linear in the 
features)

K xi, x ʹi( ) = xij
j=1

p

∑ x ʹi j



Other kernels

We could also have a 
polynomial kernel

K xi, x ʹi( ) = 1+ xij
j=1

p

∑ x ʹi j
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Other kernels

Or even a 
radial kernel

K xi, x ʹi( ) = e
−γ xij−x ʹi j( )2

j=1
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Flashback: Heart dataset



Application: Heart dataset

• Goal: predict whether an individual has heart disease on 
the basis of 13 variables: Age, Sex, Chol, etc. 

• 297 subjects, randomly split into 207 training and 90 test 
observations

• Problem: no good way to plot in 13 dimensions

• Solution: ROC curve



ROC curve: LDA vs. SVM, linear kernel



ROC curve: SVM, linear vs. radial kernel



Coming up

• Wednesday: Multiclass support vector machines
• FP2 due tonight by 11:59pm

• FP3 out this afternoon


