LECTURE 19:
TREE-BASED METHODS PT. 2

November 15, 2017
SDS 293: Machine Learning



Outline

Basic mechanics of tree-based methods
Classification example
Choosing good splits
Pruning

How to avoid over-fitting
Bootstrap aggregation (“bagging”)
Random forests
Boosting

Lab



Flashback

VT /VF . ' EMD / Asystole / Other

Different!

Teeen
Teeee
AED :
Automated External Defibrillator m
. —h‘——-._o—'-—
ﬁ

"

P11 1



Flashback
=
m = C =
] , -
1 Bom -

Problem: high variance



Discussion

- Question: what can we do to combat high variance?

- Answer: bootstrap and aggregate!




Bagging

- Big idea: use regular old bootstrapping to generate a
bunch of sample training sets, build trees for each one,

- -
U ‘; -

e, ciiftesy Rachopin77 on DeviantArtg#f



Estimating test error

Fun fact: there is a straightforward way to estimate the
test error of a bagged model, without needing to use a
test set or cross-validate!

Key: trees are repeatedly fit to bootstrapped subsets
Each bagged tree only trains on ~2/3 of the observations
The remaining ~1/3 are called the out-of-bag (OOB) observations

Question: how does this help?



OOB error

’?ﬁ

Irained on tnIs

observation? ]
Repeat for every observation,

average to get MSE or classification error

*with enough trees, this is essentially equivalent to LOOCYV error



Measuring predictor importance

With just one tree, it was easy to pick out the most
important predictor (which one was it?)

|

S —




Measuring predictor importance

With lots of trees, we can't just “read from the top”

Instead, we can look at average reduction in RSS or Gini
due to splits on a given predictor (we’'ll see this in lab)

Fbs
RestECG
ExAng
Sex
Slope
Chol

Age
RestBP
MaxHR
Oldpeak

ChestPain

I
20 40 60

=
8
ey
[=]
[=]

Variable Importance



Just one problem...

One issue with bagging is that it sometimes gives us trees that
are pretty highly correlated (why?)

If we have one
very strong predictor
in the data set, most or
all of the trees will use

this predictor in the
top split

Averaging highly correlated values doesn’t reduce variance
as much as averaging uncorrelated quantities



Random forests

Strange idea: what if each time we go to make a split, we
randomly limit the choice to some subset of predictors?



Boosting

- Previous methods: generate a bunch of training sets, fit
a tree on each one independently, and aggregate results

- Boosting works in a similar way, except that each tree is
grown using information from previous trees



Boosting

Big idea: fit each new tree using the residuals from the
previous tree as the response

A shrinkage parameter A slows the process even more,
allowing different-shaped trees to try to deal w/ residuals

By fitting small trees to the residuals (i.e. variance we
haven’t yet explained), we slowly” improve the model in
areas where it makes mistakes

* in general, statistical learning approaches that
learn slowly tend to perform well



Boosting: algorithm
Initialize f(x) = 0 and r; = y; for all i in the training set

(X, 1)



Takeaways

Tree-based methods partition the predictors into a
number of simple regions, and use the average value of
each region to make predictions

While easy to interpret, trees typically won’t outperform
other methods we've seen in terms of prediction accuracy

Bagging, random forests, and boosting all try to fix this by
growing multiple trees and using “consensus prediction”

In lab, we will see that combining a large number of
trees can result in dramatic improvements in prediction
accuracy (at the expense of some loss in interpretability)



Lab: bagging, random forests, & boosting

To do today’'s lab in R: tree, randomForest, gbm

To do today’s lab in python: graphviz

Instructions and code:

[course website]/labs/lab14-r.html

[course website]/labs/lab14-py.html

Full version can be found beginning on p. 324 of ISLR



Coming up

A7 due tonight by 11:59pm
Next week: final project workshop

After break: support vector machines



