LECTURE 16:
BEYOND LINEARITY PT. 2

November 8, 2017
SDS 293: Machine Learning



Outline

Moving beyond linearity
Polynomial regression
Step functions
Splines
‘+ocalregression
Generalized additive models (GAMSs)
Lab



Recap: polynomial regression
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Pr(Wage>250 | Age)

Recap: step functions
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Big idea:
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fit a separate model

on each piece, and
glue them together



Discussion

- Question: what do these approaches have in common?

- Answer: they both apply some set of transformations to
the predictors. These transformations are known more
generally as basis functions:

- Polynomial regression: bj (xl) = xi]

- Step functions: b(x) =1{c; < x; < Cjyq
S ( / l / ) Lots of other

functions we

w,. could try as well!




Piecewise polynomials

What if we combine polynomials and step functions?

EXx:
— 2 3
Vi = Po + P1X; + [oxi + 3 + &
l , ) Points where
may take different values -
SN coefficients change
in different parts of X e s
= “knots
2 3 -
v = Bo1 + Bi1Xi + B21xi + B31xi +¢& if x; <c
i

Boz + Biz2x; + ,Bzzxiz + ,33zxi3 + & if x; =2¢

I



EX: Wage data subset

Problem?
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One way to fix it: require continuity
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Degrees of freedom vs. constraints

In our piecewise cubic function with one knot, we had
8 degrees of freedom:

_JBo1 + frax; + Bo1xf + B3ix; +& if x; <c
Boz + Bi2X; + Payx? + Baxx; + & if x; = ¢

i
We can add constraints to remove degrees of freedom:
Function must be continuous
Function must have continuous 1st derivative (slope)
Function must have continuous 2"d derivative (curvature)



Better way: constrain function & derivatives
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Regression splines

- Question: how do we we fit a piecewise degree-d
polynomial while requiring that it (and possibly its first d—1
derivatives) be continuous?

- Answer: use the basis model we talked about previously




Fitting regression splines

Let's say we want a cubic spline” with K knots:

Vi = Bo + B1b1(x;) + Baby[(x;) + - + Bryzbgsfxi) + &
| |

just need to choose appropriate
basis functions

One common approach is to start with a standard basis
for a cubic polynomial (x, x°, x*) and then add one
truncated power basis function per knot &:

h(x,f)z{(x_€)3ifx>€

0 otherwise

*Cubic splines are popular because most human eyes
cannot detect the discontinuity at the knots



EX: Wage data, 3 knots
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EXx: Wage data, 3 knots, cubic spline
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Ex: Wage data, 3 knots, natural spline
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Regression splines

- Question: how do we figure out how many knots to use,
and where to put them?

- Answer: the methods we used to determine the best
number of predictors can help us figure out how many
knots to use. For placement, we have several options:
- Place them uniformly across the domain
- Put more knots in places where the data varies a lot
- Place them at percentiles of interest (e.g. 25", 50, and 75%)




Wage

Ex: Wage data, 3 knots at 251, 50", & 75t

S ;
o o !
o — I
(ap) [}
]
]
8 — (g} |
Al A [
o ]
? ]
S — < /
A — !
o o 1
g I /
3 - y° :
~— () /
o0 ’
o]
o 2
S — s 8
o o
o _|
Y]
o
o —
[ [ [ [ [ [ [ © [ [ [ [ [ [ [
20 30 40 50 60 70 80 20 30 40 50 60 70 80



Comparison with polynomial regression

- Question: how would you expect this to compare to
polynomial regression?

- Answer: regression splines often give better results than
polynomial regression because they can add flexibility in

places where it is needed by adding more knots, without
having to add more predictors




EX: Wage data, polynomial vs. spline
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Discussion

Regression splines: specify knots, find good basis
functions, and use least squares to estimate coefficients

Goal: find a function g(x) that fits the data well, i.e.

RSS = ) (v - 9(x))’

Is small
Question: what'’s a trivial way to minimize RSS?

Answer: interpolate over all the data (overfit to the max!)



Smoothing splines

Goal: find a g that makes RSS small but that is also smooth

Dust off your calculus” and we can find g that minimizes:

RSS = Z(yi — g(xi))2 + /lf g" (t)4dt

y
l || |
“make sure you “make sure
fit the data” you’re smooth”

Fun fact: this is minimized by a shrunken version of the
natural cubic spline with knots at each training observation

*The second derivative of a function is a measure of its roughness: it is large
in absolute value if g(z) is very wiggly near ¢, and close to zero otherwise



Whoa... knots at every training point?

- Question: shouldn'’t this give us way too much flexibility?

- Answer: the key is in the shrinkage parameter 4, which
influences our effective degrees of freedom
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Ex: Wage data, smoothing splines w/ different A
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Pr(Wage>250 | Age)
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Recap

So far: flexibly predict Y on the basis of one predictor X
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= extensions of simple linear regression

Question: what seems like the next logical step?



Generalized additive models (GAMSs)

Big idea: extend these methods to multiple predictors and
non-linear functions of those predictors just like we did in
with linear models before

Multiple linear regression:
y = Po+ B1xy + Baxy + -+ Bpx, + £

GAM:
y = Po+ filx) + f2(x) + - +fp(xp) T €
| |

polynomials, step functions, splines...
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Pros and Cons of GAMs

Good stuff

Non-linear functions are
potentially more accurate

Adds local flexibility w/o
iIncurring a global penalty

Because model is still
additive, can still see the
effect of each X;onY

Bad stuff

Just like in multiple
regression, have to add
interaction terms manually

*In the next chapter, we’ll talk about fully
general models that can (finally!) deal with this



Lab: Splines and GAMs

To do today's lab in R: spline, gam
To do (the first half of) today’s lab in python: patsy

Instructions and code:

[course website]/labs/lab13-r.html

[course website]/labs/lab13-py.html

Full version can be found beginning on p. 293 of ISLR



Up Next

FP1 due tonight by 11:59pm
A7 out tonight, due Thursday by 11:59pm

Next week: tree-based methods



