LECTURE 16:

BEYOND LINEARITY PT. 2

November 8, 2017

SDS 293: Machine Learning

Outline

- Moving beyond linearity
 - ✓ Polynomial regression
 - √ Step functions
 - Splines
 - Local regression
 - Generalized additive models (GAMs)
- Lab

Recap: polynomial regression

Big idea:

extend the linear model by adding extra predictors that are **powers of** *X*

Recap: step functions

Big idea:

break *X* into pieces, fit a separate model on each piece, and glue them together

Discussion

- Question: what do these approaches have in common?
- Answer: they both apply some set of transformations to the predictors. These transformations are known more generally as basis functions:
 - Polynomial regression: $b_j(x_i) = x_i^j$

- Step functions: $b_j(x_i) = I(c_j \le x_i < c_{j+1})$

Lots of other functions we could try as well!

Piecewise polynomials

- What if we combine polynomials and step functions?
- Ex:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i$$
 Points where coefficients change in different parts of X = "knots"
$$y_i = \begin{cases} \beta_{01} + \beta_{11} x_i + \beta_{21} x_i^2 + \beta_{31} x_i^3 + \varepsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12} x_i + \beta_{22} x_i^2 + \beta_{32} x_i^3 + \varepsilon_i & \text{if } x_i \ge c \end{cases}$$

Ex: Wage data subset

One way to fix it: require continuity

Degrees of freedom vs. constraints

In our piecewise cubic function with one knot, we had
 8 degrees of freedom:

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \varepsilon_i & \text{if } x_i < c \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \varepsilon_i & \text{if } x_i \ge c \end{cases}$$

- We can add constraints to remove degrees of freedom:
 - 1. Function must be continuous
 - 2. Function must have continuous 1st derivative (slope)
 - 3. Function must have continuous 2nd derivative (curvature)

Better way: constrain function & derivatives

Regression splines

- Question: how do we we fit a piecewise degree-d polynomial while requiring that it (and possibly its first d-1 derivatives) be **continuous**?
- Answer: use the basis model we talked about previously

Fitting regression splines

Let's say we want a cubic spline* with K knots:

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \varepsilon_i$$

just need to choose appropriate basis functions

• One common approach is to start with a standard basis for a cubic polynomial (x, x^2, x^3) and then add one **truncated power basis** function per knot ξ :

$$h(x,\xi) = \begin{cases} (x-\xi)^3 & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$

Ex: Wage data, 3 knots

Ex: Wage data, 3 knots, cubic spline

Ex: Wage data, 3 knots, natural spline

Regression splines

- Question: how do we figure out how many knots to use, and where to put them?
- Answer: the methods we used to determine the best number of predictors can help us figure out how many knots to use. For placement, we have several options:
 - Place them **uniformly** across the domain
 - Put more knots in places where the data varies a lot
 - Place them at **percentiles** of interest (e.g. 25th, 50th, and 75th)

Ex: Wage data, 3 knots at 25th, 50th, & 75th

Comparison with polynomial regression

- Question: how would you expect this to compare to polynomial regression?
- Answer: regression splines often give better results than polynomial regression because they can add flexibility in places where it is needed by adding more knots, without having to add more predictors

Ex: Wage data, polynomial vs. spline

Discussion

- Regression splines: specify knots, find good basis functions, and use least squares to estimate coefficients
- Goal: find a function g(x) that fits the data well, i.e.

$$RSS = \sum_{i=1}^{n} (y_i - g(x_i))^2$$

is **small**

- Question: what's a trivial way to minimize RSS?
- Answer: interpolate over all the data (overfit to the max!)

Smoothing splines

- Goal: find a g that makes RSS small but that is also smooth
- Dust off your calculus* and we can find g that minimizes:

$$RSS = \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$
"make sure you
"make sure
fit the data"
"make sure
you're smooth"

 Fun fact: this is minimized by a shrunken version of the natural cubic spline with knots at each training observation

Whoa... knots at every training point?

- Question: shouldn't this give us way too much flexibility?
- **Answer**: the key is in the shrinkage parameter λ , which influences our **effective** degrees of freedom

Ex: Wage data, smoothing splines w/ different λ

Recap

So far: flexibly predict Y on the basis of one predictor X

= extensions of simple linear regression

Question: what seems like the next logical step?

Generalized additive models (GAMs)

 Big idea: extend these methods to multiple predictors and non-linear functions of those predictors just like we did in with linear models before

Multiple linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \varepsilon$$

GAM:

$$y = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p) + \varepsilon$$
polynomials, step functions, splines...

Ex: Wage data, GAM with splines

Pros and Cons of GAMs

Good stuff

- Non-linear functions are potentially more accurate
- Adds local flexibility w/o incurring a global penalty
- Because model is still additive, can still see the effect of each X_j on Y

Bad stuff

 Just like in multiple regression, have to add interaction terms manually*

Lab: Splines and GAMs

- To do today's lab in R: spline, gam
- To do (the first half of) today's lab in python: patsy
- Instructions and code:

[course website]/labs/lab13-r.html

[course website]/labs/lab13-py.html

Full version can be found beginning on p. 293 of ISLR

Up Next

- FP1 due tonight by 11:59pm
- A7 out tonight, due Thursday by 11:59pm
- Next week: tree-based methods