LECTURE 16:

BEYOND LINEARITY PT. 1

November 6, 2017

SDS 293: Machine Learning

Announcements

- Assignments
 - Feedback for A5/A6 should be out shortly
 - Solutions posted to Moodle
- Final Projects:
 - FP1: Data Appendix due Wednesday*
 - 6 people still need teams
- A few minor schedule changes pending
 - Mostly in response to final project topics
 - Will announce on Slack when confirmed
- T-minus 6 weeks until the end of the semester!

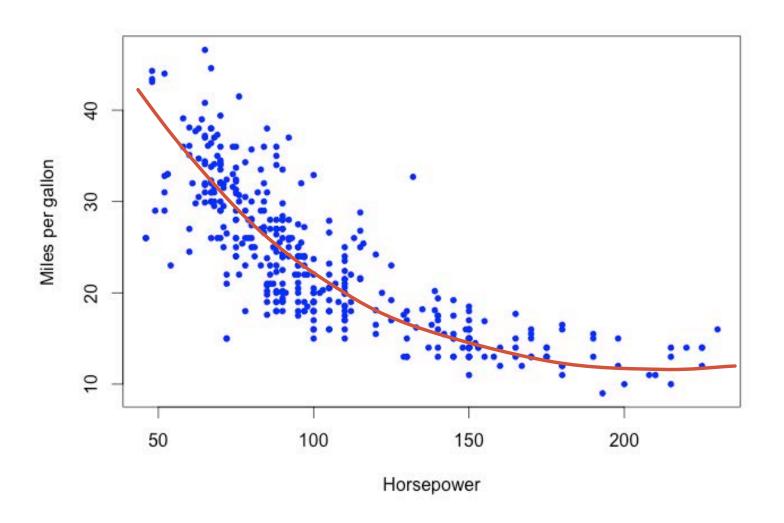
Outline

- Moving beyond linearity
 - Polynomial regression
 - Step functions
 - Splines
 - Local regression
 - Generalized additive models (GAMs)
- Labs for each part

So far: linear models

- The good:
 - Easy to describe & implement
 - Straightforward interpretation & inference
- The bad:
 - Linearity assumption is (almost) always an approximation
 - Sometimes it's a pretty poor one
- RR, the lasso, PCA, etc. all try to improve on least squares by controlling the variance of a linear model
- ... but linear models can only stretch so far

Flashback: Auto dataset



Polynomial regression

One simple fix is to use polynomial transformations:

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

• This example is a *quadratic regression*

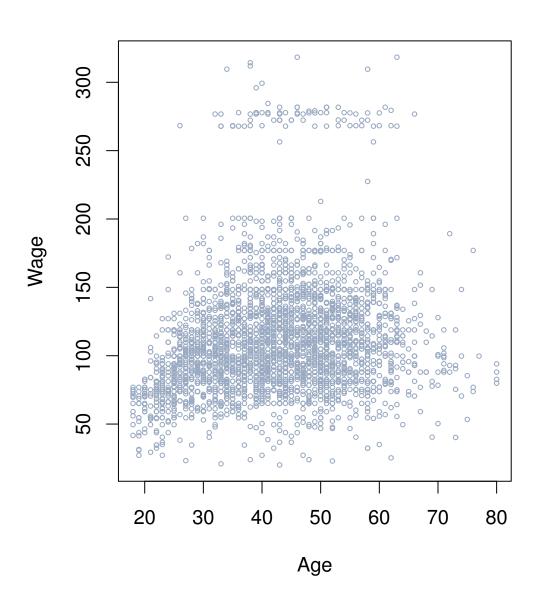
 Big idea: extend the linear model by adding extra predictors that are powers of the original predictors

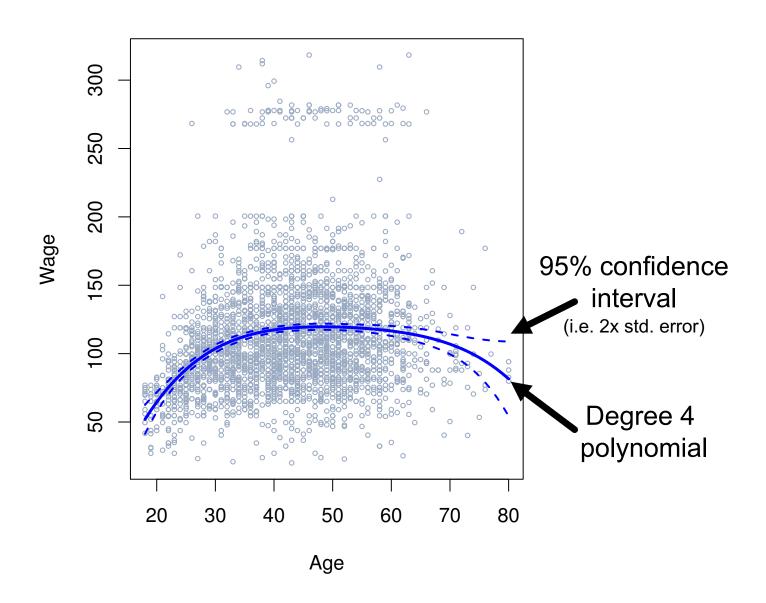
Note: this is still a linear model!

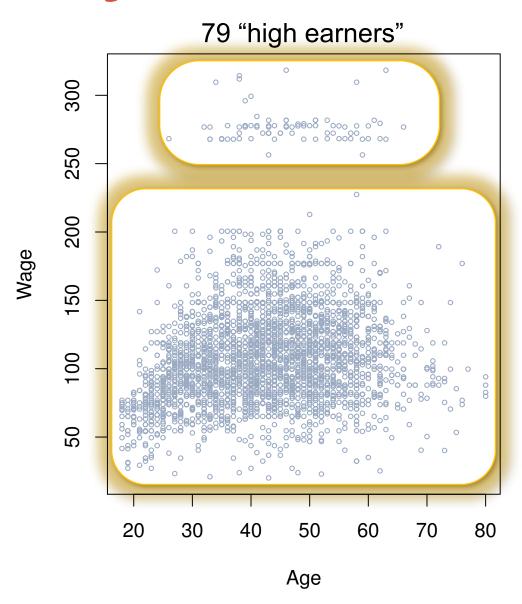
(and so we can find its coefficients using regular ol' least squares)

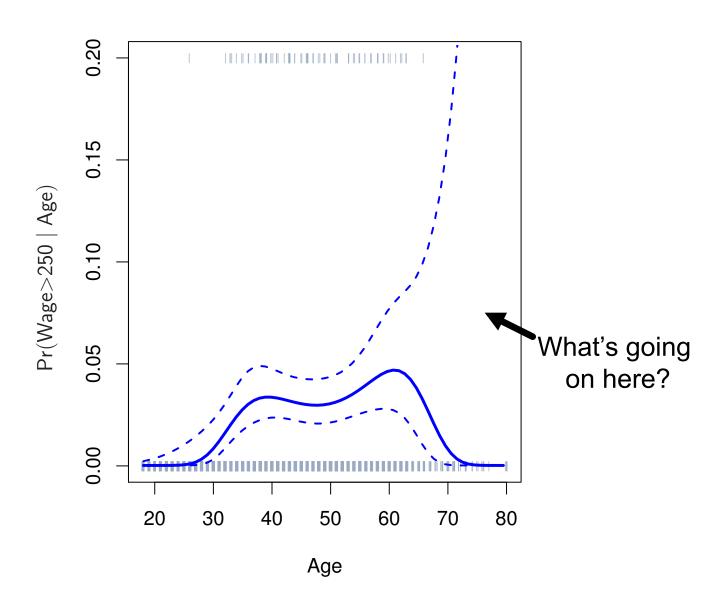
Polynomial regression in practice

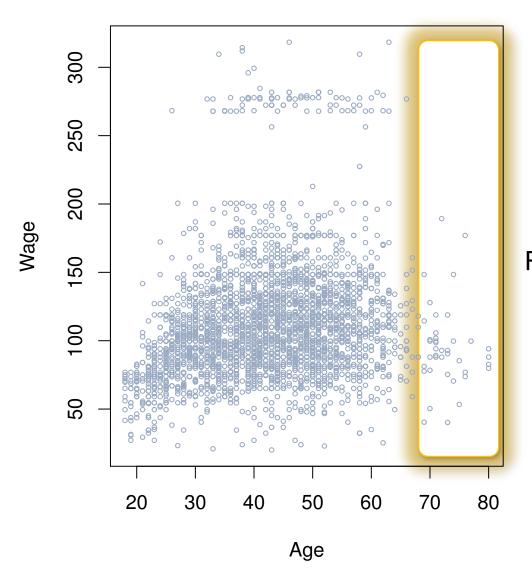
- For large enough degree d, a polynomial regression allows us to produce an extremely non-linear curve
- As d increases, this can produce some really weird shapes
- Question: what's happening in terms of bias vs. variance?
- Answer: increased flexibility → less bias, more variance; in practice, we generally only go to degree 3 or 4 unless we have additional knowledge that more will help











Relatively sparse = less confident

Global structure in polynomial regression

- Polynomial regression gives us added flexibility, but imposes global structure on the non-linear function of X
- Question: what's the problem with this?
- Answer: when data behave differently in different parts of the domain, function can to get really complicated

Step functions

• **Big idea**: if our data exhibits different behavior in different parts, we can fit a separate "mini-model" on each piece and then glue them together to describe the whole

Process:

- 1. Create k cutpoints c_1, c_2, \ldots, c_K in the range of X
- 2. Construct (k+1) dummy variables:

$$C_{0}\left(X\right) = I\left(X < c_{1}\right)$$

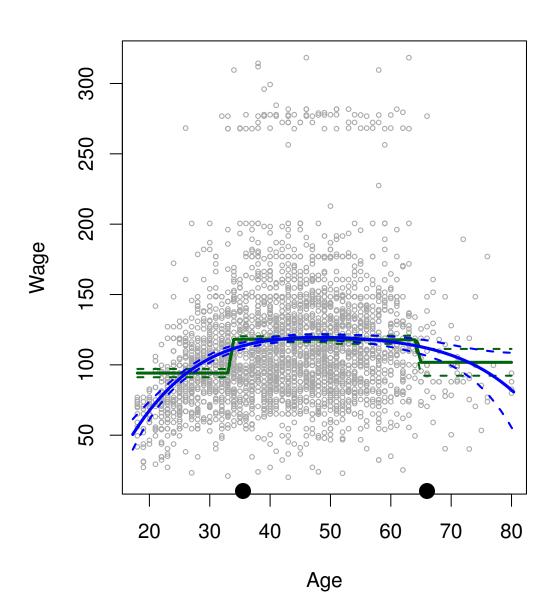
$$C_{1}\left(X\right) = I\left(c_{1} \le X < c_{2}\right)$$

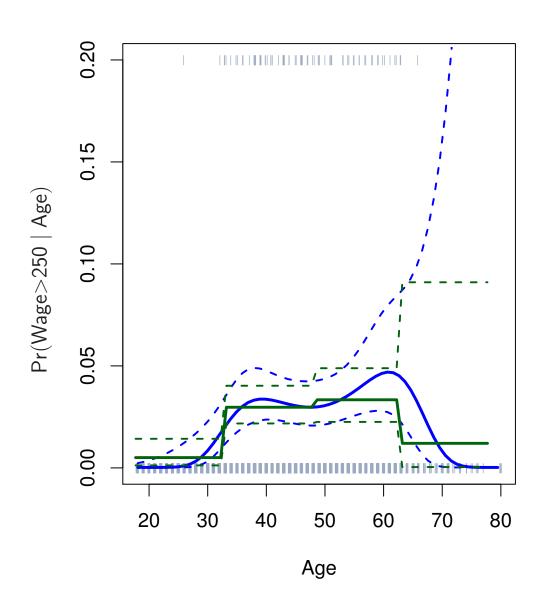
$$C_{1}\left(X\right) = I\left(c_{1} \le X < c_{2}\right)$$

$$\vdots$$

$$C_{K}\left(X\right) = I\left(c_{k} \le X\right)$$

3. Fit least squares model using $C_1(X), \ldots, C_K(X)$ as predictors (we can exclude $C_0(X)$ because it is redundant with the intercept)





Granularity in step functions

- Step functions give us added flexibility by letting us model different parts of X independently
- Question: what's the problem with this?
- Answer: if our data doesn't have natural breaks, choosing the wrong step size might mean that we "miss the action"

Lab: Polynomials and Step Functions

- To do today's lab in R: <nothing new>
- To do today's lab in python: <nothing new>
- Instructions and code:

http://www.science.smith.edu/~jcrouser/SDS293/labs/lab12/

Full version can be found beginning on p. 287 of ISLR