LECTURE 13:

DIMENSIONALITY REDUCTION

October 25, 2017
SDS 293: Machine Learning



e
Outline

Model selection: alternatives to least-squares

Dimension reduction

Labs for each part



R
Recap: Ridge Regression and the Lasso

- Both are “shrinkage” methods

- Estimates for the coefficients are biased toward the origin

- Biased = “prefers some estimates to others”
- Does not yield the true value in expectation

- Question: why would we want a biased estimate?
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What's wrong with bias?

What if your unbiased estimator gives you this?
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May want to bias our estimate
to reduce variance
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Image credit: Ming Malaykham



Estimating Guardians’ Height
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R
Estimate for 3

When we try to estimate using OLS, we get the following:

' ®
6 | —® estimated —
=@ true

(Relatively) huge difference between
actual and estimated coefficients




What's going on here?
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Some dimensions are redundant
Little information in 3" dimension not captured by the first two
In linear regression, redundancy causes noise to be amplified



Dimension reduction

Current situation: our data live in p-dimensional space,
but not all p dimensions are equally useful

Subset selection: throw some out
Pro: pretty easy to do
Con: lose some information

Alternate approach: create new features that are
combinations of the old ones

In other words:
Project the data into a new feature space

to reduce variance in the estimate
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Projection




Projection




Projection




e
Dimension reduction via projection

Big idea: fransform the data before performing regression

X1 X, X3 X4 Xg| - [Zy Z;]

Then instead of:
p
Y=,80+2,BiXi+€
i=1
we solve:

m
YZQO +29izi+€
=1
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Linear projection

- New features are linear combinations of original data:

m
L

- MTH211: multiplying the data matrix by a projection matrix

P11 P1,27

P21 P22

1Z1 Z;]=[X; X, X3 X, Xs||P31 P32
, Pa1 P42

P51 P52




What's the deal with projection?

Data can be rotated, scaled, and translated without
changing the underlying relationships

This means you're allowed to look at the data from
whatever angle makes your life easier...




R
Flashback: why did we pick this line”?




e
Explains the most variance in the data
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Imagine this line as a new dimension...




e
“Principal component’

Most variance




-
Mathematically

The 15t principal component is the normalized’ linear
combination of features:

Z1 = Q11X + P21 X2 + -+ Pp1 Xy

that has the largest variance

$11, -, Pp1: the loadings of the 15 principal component

|4
* By normalized we mean: Z ¢ =1
=



R
Using loadings to project

Multiply by loading vector to project (“smoosh”)
each observation onto the line:

Zi1 = P11Xi1 T Pa1xip + o+ Pp1xip

These values are called the scores
of the 1st principal component



Additional principal components

2"d principal component is the normalized linear
combination of the features

Ly = P12X1 + P Xy + -+ Py Xy,

that has maximal variance out of all linear combinations
that are uncorrelated with Z, (why does that matter?)

Fun fact:



N
Principal components are orthogonal

y
&




Generating additional principal components

We can think of this recursively

To find the Mt principal component . . .
Find the first (M — 1) principal components
Subtract the projection into that space
Maximize the variance in the remaining complementary space



R
Regression in the principal components

Original objective: solve for Sin

p
Y::BO_I_ZIBL'XL'_I_E
L

(that’s still our goal)

Now we’re going to work in the new feature space:

M
Y=90+ZHiZi+€
L



R
Regression in the principal components

Remember: the new features are related to the old ones:

p
Zj = Z ¢iiX;
i=1

So we’re computing:

M
Y:90+ QJZ]+€
=1
M p
= b +zgj2¢ijxl +&
j=1 i=1
M
= B = Zejd)ij



Back to the Guardians
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Back to the Guardians

What happens if we use 2 components instead of 37

B | | ® B

6 -——® estimated - OLS

=@ true
4— estimated - PCR T
Q_z - P _
~ ()]
0 I . N N — —
lﬂyﬁ\% £ o
i

Using only the principal components
significantly improves our estimate!




Comparison with ridge regression and the lasso

- What similarities do you see?
- Reduces dimensionality of the solution space (like Lasso)
- Finds a solution in the space of all features (like RR)
- Results can be difficult to interpret (like RR)




e
Problems with PCR

- We selected principal components based on predictors
(not what we're trying to predict!)

- This could be problematic (why?)

- What if the values you're trying to predict aren’t correlated with the
first few components?

- You lose all predictive power!




e
Partial least squares (PLS)

A supervised form of PCR

Feature derivation algorithm is similar:

Find the (M-1) prineipal most correlated components
Subtract the projection into that space

Maximize the varianee correlation with the response in the
remaining complementary space

As before, we perform least squares on the new features
We still use the formulation

p
Zj = z bijXi
i=1

But now ¢ is computed by applying linear regression to each
predictor



e
Wrapping up: PCR/PLS comparison

Both derive a small number of orthogonal predictors for
linear regression

PCR is more biased
Emphasizes stability at the expense of versatility

PLS estimates have higher variance
May build new features that aren’t as stable
But high variance is better than infinite variance



I
Lab: PCR and PLS

To do today’s lab in R: pls

To do today’s lab in python: <nothing new>

Instructions and code:

[course website]/labs/lab11-r.html

[course website]/labs/lab11-py.html

Full version can be found beginning on p. 256 of ISLR
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Estimating Guardians’ Height
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Estimate for 3

When we try to estimate using OLS, we get the following:

' ®
6 | —® estimated —
=@ true

(Relatively) huge difference between
actual and estimated coefficients




R
What's going on here?
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Some dimensions are redundant
Little information in 3™ dimension not captured by the first two
In linear regression, redundancy causes noise to be amplified



Projection




Projection
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Linear projection

- New features are linear combinations of original data:

m
L

- MTH211: multiplying the data matrix by a projection matrix

P11 P1,27

P21 P22

1Z1 Z;]=[X; X, X3 X, Xs||P31 P32
, Pa1 P42

P51 P52




What's the deal with projection?

Data can be rotated, scaled, and translated without
changing the underlying relationships

This means you're allowed to look at the data from
whatever angle makes your life easier...




R
Using loadings to project

Multiply by loading vector to project (“smoosh”)
each observation onto the line:

Zi1 = P11Xi1 T Pa1xip + o+ Pp1xip

A (9)(66060)(606680)(€0)(0) )60 o
i ——

These values are called the scores
of the 1st principal component
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Regression in the principal components

Remember: the new features are related to the old ones:

p
Zj = Z ¢iiX;
i=1

So we’re computing:

M
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i=1
M p
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Back to the Guardians
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Back to the Guardians

What happens if we use 2 components instead of 37
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Using only the principal components
significantly improves our estimate!




Comparison with ridge regression and the lasso

- What similarities do you see?
- Reduces dimensionality of the solution space (like Lasso)
- Finds a solution in the space of all features (like RR)
- Results can be difficult to interpret (like RR)




e
Problems with PCR

- We selected principal components based on predictors
(not what we're trying to predict!)

- This could be problematic (why?)

- What if the values you're trying to predict aren’t correlated with the
first few components?

- You lose all predictive power!




