LECTURE 13:

DIMENSIONALITY REDUCTION

October 25, 2017

SDS 293: Machine Learning

Outline

- Model selection: alternatives to least-squares
- √Subset selection
 - ✓ Best subset
 - ✓ Stepwise selection (forward and backward)
 - ✓ Estimating error using cross-validation
- √Shrinkage methods
 - ✓ Ridge regression and the Lasso
 - Dimension reduction
- Labs for each part

Recap: Ridge Regression and the Lasso

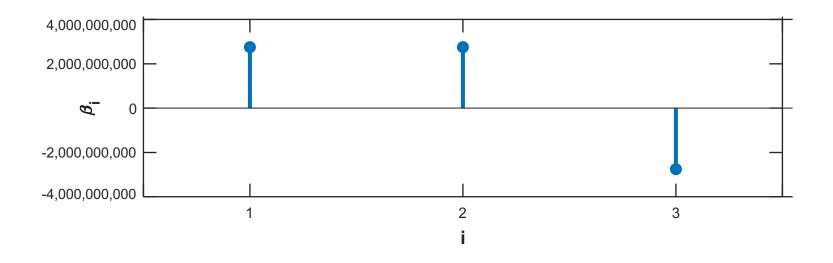
- Both are "shrinkage" methods
- Estimates for the coefficients are biased toward the origin
 - Biased = "prefers some estimates to others"
 - Does not yield the true value in expectation
- Question: why would we want a biased estimate?

Recap: Ridge Regression and the Lasso

- Both are "shrinkage" methods
- Estimates for the coefficients are biased toward the origin
 - Biased = "prefers some estimates to others"
 - Does not yield the true value in expectation
- Question: why would we want a biased estimate?

What's wrong with bias?

What if your unbiased estimator gives you this?



May want to bias our estimate to **reduce variance**

Flashback: superheroes

$$height = \beta_1 \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) + \beta_2 \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \beta_3 \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

Estimating Guardians' Height

232.03
156.29
113.82
229.07
287.72

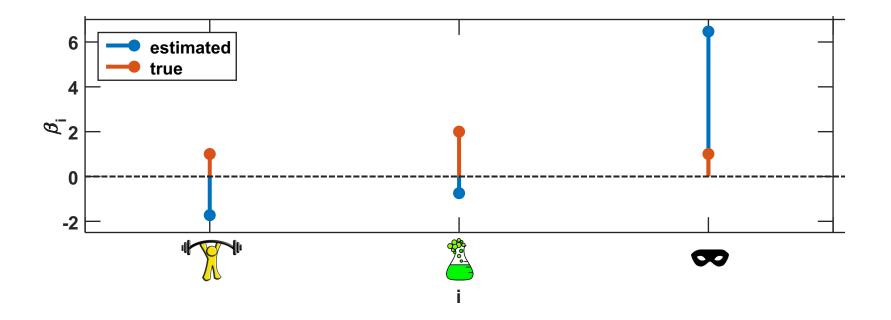
	_	_
53.9		54.0
28.9		45.1
54.3	+2	13.3
59.8		49.5
50.4		05 1

	S
	59.1
	36.9
+1	33.7
	59.7
	67.9

•		
59. 36. 33. 59.	1 9 7 +	$egin{bmatrix} oldsymbol{arepsilon}_1 & & & & & & & & & & & & & & & & & & &$
67.	9	$oldsymbol{arepsilon}_{5}$

Estimate for β

When we try to estimate using OLS, we get the following:



(Relatively) huge difference between actual and estimated coefficients

What's going on here?

$$\begin{bmatrix} 232.03 \\ 156.29 \\ 113.82 \\ 229.07 \\ 287.72 \end{bmatrix} = \begin{bmatrix} 63.9 \\ 28.9 \\ 54.3 \\ 69.8 \\ 50.4 \end{bmatrix} + 2 \begin{bmatrix} 54.0 \\ 45.1 \\ 13.3 \\ 49.5 \\ 85.4 \end{bmatrix} + 1 \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ 33.7 \\ 59.7 \\ 67.9 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{bmatrix}$$

$$\approx avg \left(\begin{array}{c} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{array} \right)$$

- Some dimensions are redundant
 - Little information in 3rd dimension not captured by the first two
 - In linear regression, redundancy causes noise to be amplified

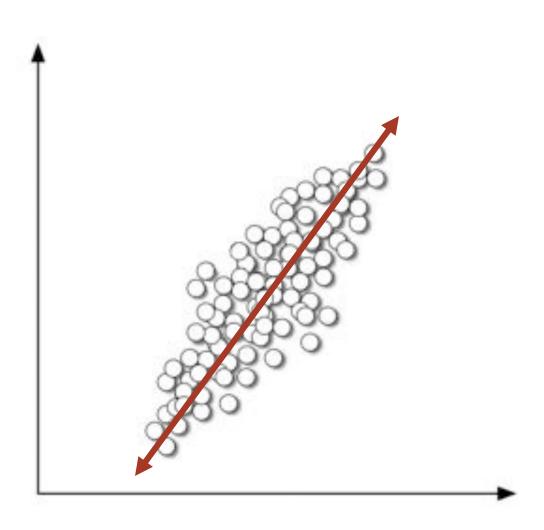
Dimension reduction

- Current situation: our data live in p-dimensional space, but not all p dimensions are equally useful
- Subset selection: throw some out
 - Pro: pretty easy to do
 - Con: lose some information
- Alternate approach: create new features that are combinations of the old ones

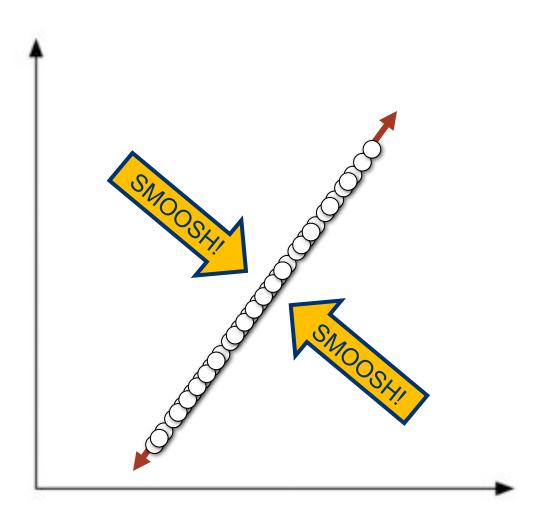
In other words:

Project the data into a new feature space to reduce variance in the estimate

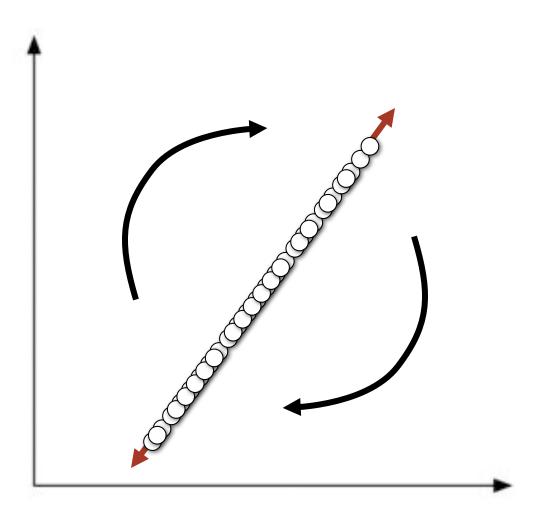
Projection



Projection



Projection



Dimension reduction via projection

• Big idea: transform the data before performing regression

$$[X_1 \ X_2 \ X_3 \ X_4 \ X_5] \mapsto [Z_1 \ Z_2]$$

Then instead of:

$$Y = \beta_0 + \sum_{i=1}^{p} \beta_i X_i + \varepsilon$$

we solve:

$$Y = \theta_0 + \sum_{i=1}^{m} \theta_i Z_i + \varepsilon$$

Linear projection

New features are linear combinations of original data:

$$Z_j = \sum_{i}^{m} \theta_{ij} X_i$$

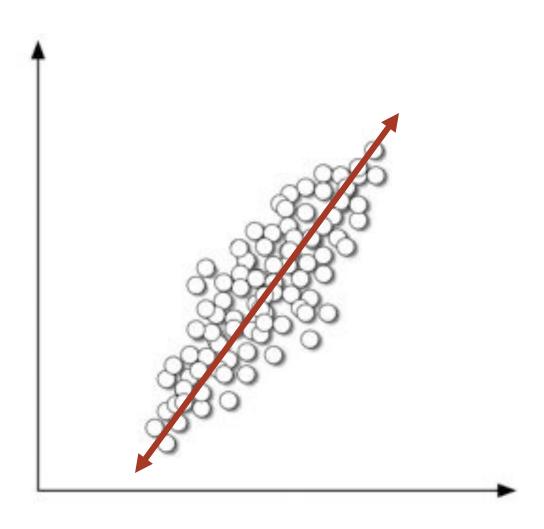
MTH211: multiplying the data matrix by a projection matrix

$$[Z_1 \quad Z_2] = [X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5] \begin{bmatrix} \varphi_{1,1} & \varphi_{1,2} \\ \varphi_{2,1} & \varphi_{2,2} \\ \varphi_{3,1} & \varphi_{3,2} \\ \varphi_{4,1} & \varphi_{4,2} \\ \varphi_{5,1} & \varphi_{5,2} \end{bmatrix}$$

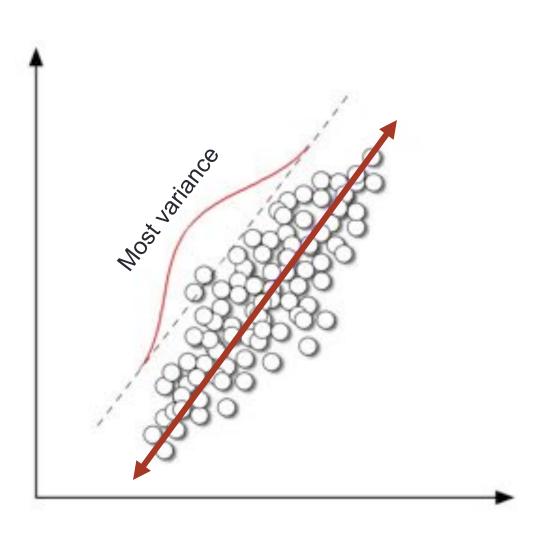
What's the deal with projection?

- Data can be rotated, scaled, and translated without changing the underlying relationships
- This means you're allowed to look at the data from whatever angle makes your life easier...

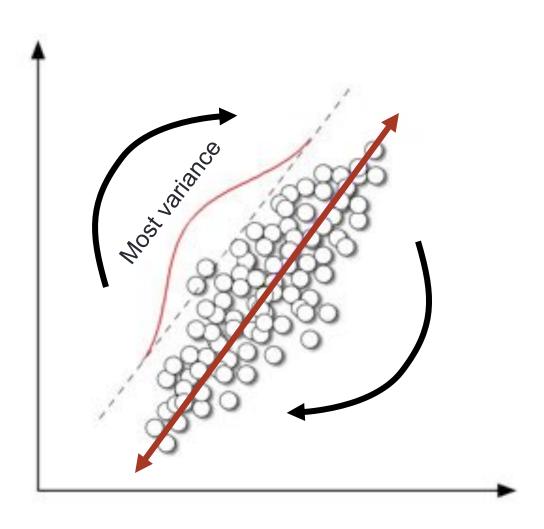
Flashback: why did we pick this line?



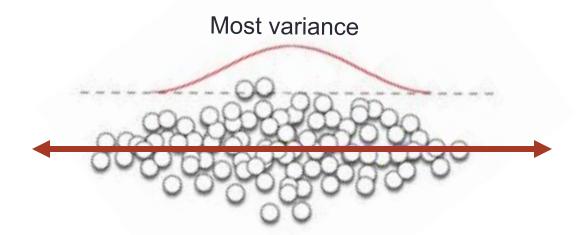
Explains the most variance in the data



Imagine this line as a new dimension...



"Principal component"



Mathematically

 The 1st principal component is the normalized* linear combination of features:

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$

that has the largest variance

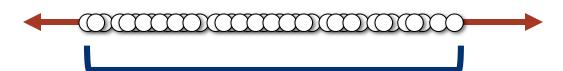
• ϕ_{11} , ..., ϕ_{p1} : the **loadings** of the 1st principal component

* By **normalized** we mean:
$$\sum_{j=1}^{p} \phi_{j1}^2 = 1$$

Using loadings to project

Multiply by loading vector to project ("smoosh") each observation onto the line:

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{p1}x_{ip}$$



These values are called the **scores** of the 1st principal component

Additional principal components

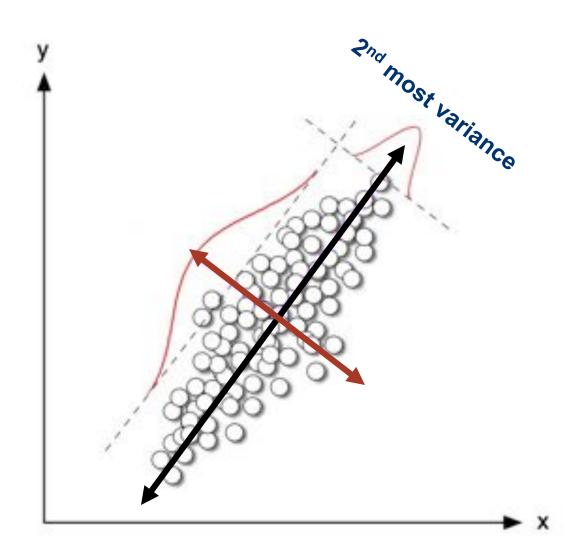
 2nd principal component is the normalized linear combination of the features

$$Z_2 = \phi_{12}X_1 + \phi_{22}X_2 + \dots + \phi_{p2}X_p$$

that has maximal variance out of all linear combinations that are **uncorrelated** with Z_I (why does that matter?)

Fun fact:

Principal components are orthogonal



Generating additional principal components

- We can think of this recursively
- To find the Mth principal component . . .
 - Find the first (M-1) principal components
 - Subtract the projection into that space
 - Maximize the variance in the remaining *complementary* space

Regression in the principal components

• Original objective: solve for β in

$$Y = \beta_0 + \sum_{i}^{p} \beta_i X_i + \varepsilon$$

(that's still our goal)

Now we're going to work in the new feature space:

$$Y = \theta_0 + \sum_{i}^{M} \theta_i Z_i + \varepsilon$$

Regression in the principal components

Remember: the new features are related to the old ones:

$$Z_j = \sum_{i=1}^p \phi_{ij} X_i$$

So we're computing:

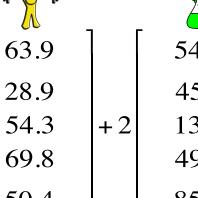
$$Y = \theta_0 + \sum_{j=1}^{M} \theta_j Z_j + \varepsilon$$

$$= \theta_0 + \sum_{j=1}^{M} \theta_j \sum_{i=1}^{p} \phi_{ij} X_i + \varepsilon$$

$$\mapsto \beta_i = \sum_{j=1}^{M} \theta_j \phi_{ij}$$

Back to the Guardians

232.03
156.29
113.82
229.07
287.72

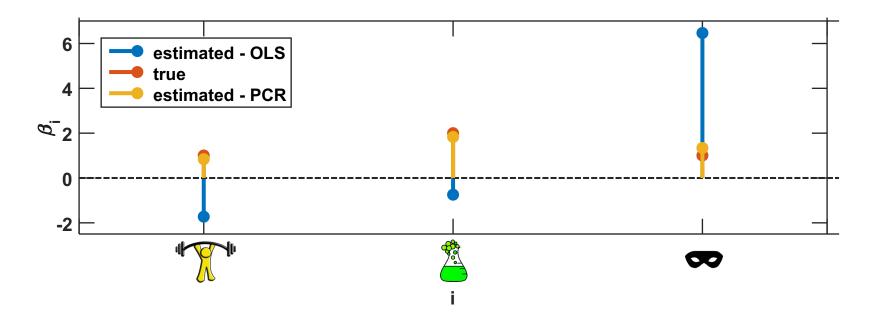


54.0]
45.1	
13.3	+1
49.5	
85.4	

59.1	
36.9	
33.7	
59.7	
67.9	

Back to the Guardians

What happens if we use 2 components instead of 3?



Using only the principal components significantly improves our estimate!

Comparison with ridge regression and the lasso

- What similarities do you see?
 - Reduces dimensionality of the solution space (like Lasso)
 - Finds a solution in the space of all features (like RR)
 - Results can be difficult to interpret (like RR)

Problems with PCR

- We selected principal components based on predictors (not what we're trying to predict!)
- This could be problematic (why?)
 - What if the values you're trying to predict aren't correlated with the first few components?
 - You lose all predictive power!

Partial least squares (PLS)

- A supervised form of PCR
- Feature derivation algorithm is similar:
 - Find the (*M*-1) principal most correlated components
 - Subtract the projection into that space
 - Maximize the variance correlation with the response in the remaining complementary space
- As before, we perform least squares on the new features
- We still use the formulation

$$Z_j = \sum_{i=1}^p \phi_{ij} X_i$$

• But now ϕ is computed by applying linear regression to each predictor

Wrapping up: PCR/PLS comparison

- Both derive a small number of orthogonal predictors for linear regression
- PCR is more biased
 - Emphasizes stability at the expense of versatility
- PLS estimates have higher variance
 - May build new features that aren't as stable
 - But high variance is better than infinite variance

Lab: PCR and PLS

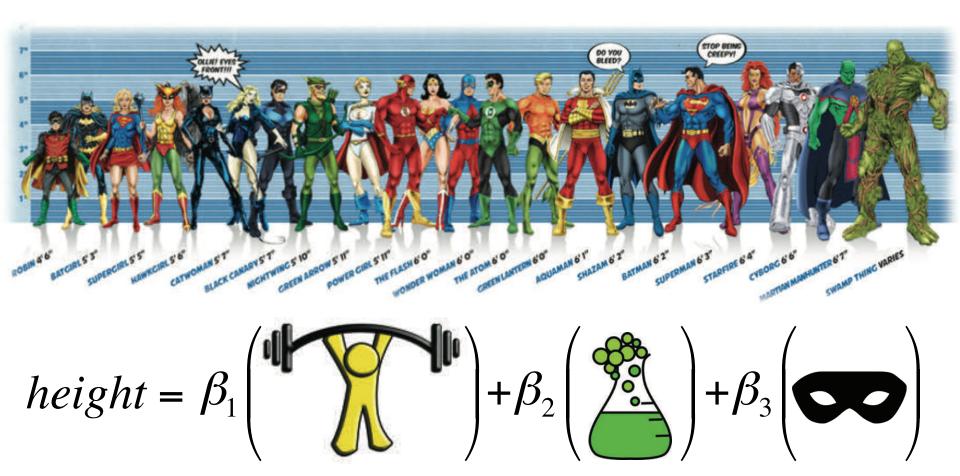
- To do today's lab in R: pls
- To do today's lab in python: <nothing new>
- Instructions and code:

[course website]/labs/lab11-r.html

[course website]/labs/lab11-py.html

Full version can be found beginning on p. 256 of ISLR

Flashback: superheroes



Estimating Guardians' Height

232.03
156.29
113.82
229.07
287.72

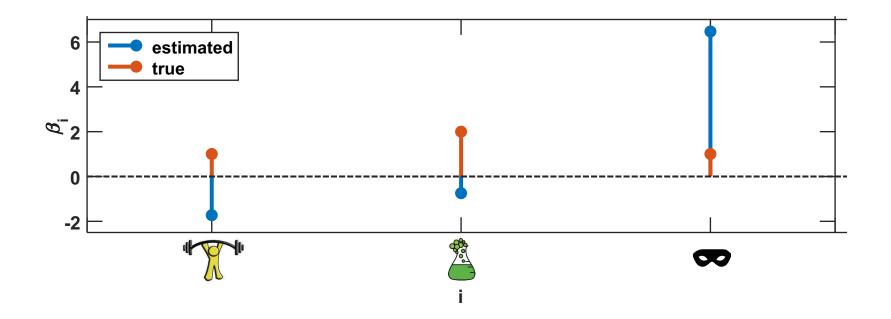
63.9	
28.9	
54.3	
69.8	
50.4	

ſ	54.0	
	45.1	
2	13.3	
	49.5	
	85.4	

	
	59.1
	36.9
+1	33.7
	59.7
	67.9

Estimate for β

When we try to estimate using OLS, we get the following:



(Relatively) huge difference between actual and estimated coefficients

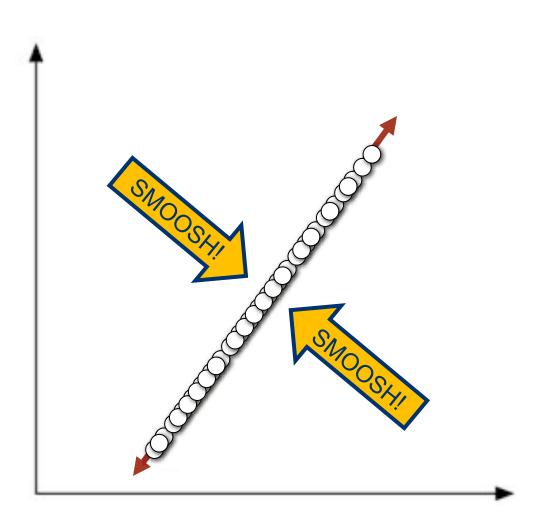
What's going on here?

$$\begin{bmatrix} 232.03 \\ 156.29 \\ 113.82 \\ 229.07 \\ 287.72 \end{bmatrix} = \begin{bmatrix} 63.9 \\ 28.9 \\ 54.3 \\ 69.8 \\ 50.4 \end{bmatrix} + 2 \begin{bmatrix} 54.0 \\ 45.1 \\ 13.3 \\ 49.5 \\ 85.4 \end{bmatrix} + 1 \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ 33.7 \\ 59.7 \\ 67.9 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{bmatrix}$$

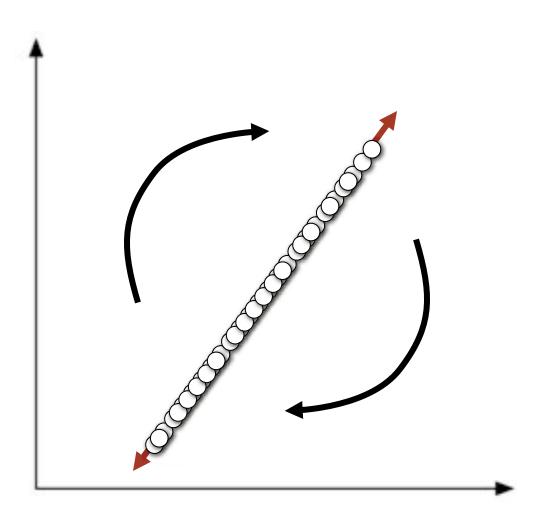
$$\approx avg \left(\begin{array}{c} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{array} \right)$$

- Some dimensions are redundant
 - Little information in 3rd dimension not captured by the first two
 - In linear regression, redundancy causes noise to be amplified

Projection



Projection



Linear projection

New features are linear combinations of original data:

$$Z_j = \sum_{i}^{m} \theta_{ij} X_i$$

MTH211: multiplying the data matrix by a projection matrix

$$[Z_1 \quad Z_2] = [X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5] \begin{bmatrix} \varphi_{1,1} & \varphi_{1,2} \\ \varphi_{2,1} & \varphi_{2,2} \\ \varphi_{3,1} & \varphi_{3,2} \\ \varphi_{4,1} & \varphi_{4,2} \\ \varphi_{5,1} & \varphi_{5,2} \end{bmatrix}$$

What's the deal with projection?

- Data can be rotated, scaled, and translated without changing the underlying relationships
- This means you're allowed to look at the data from whatever angle makes your life easier...

Using loadings to project

Multiply by loading vector to project ("smoosh") each observation onto the line:

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{p1}x_{ip}$$

These values are called the **scores** of the 1st principal component

Regression in the principal components

Remember: the new features are related to the old ones:

$$Z_j = \sum_{i=1}^p \phi_{ij} X_i$$

So we're computing:

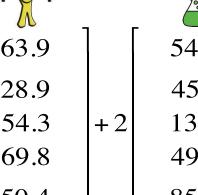
$$Y = \theta_0 + \sum_{j=1}^{M} \theta_j Z_j + \varepsilon$$

$$= \theta_0 + \sum_{j=1}^{M} \theta_j \sum_{i=1}^{p} \phi_{ij} X_i + \varepsilon$$

$$\mapsto \beta_i = \sum_{j=1}^{M} \theta_j \phi_{ij}$$

Back to the Guardians

232.03
156.29
113.82
229.07
287.72



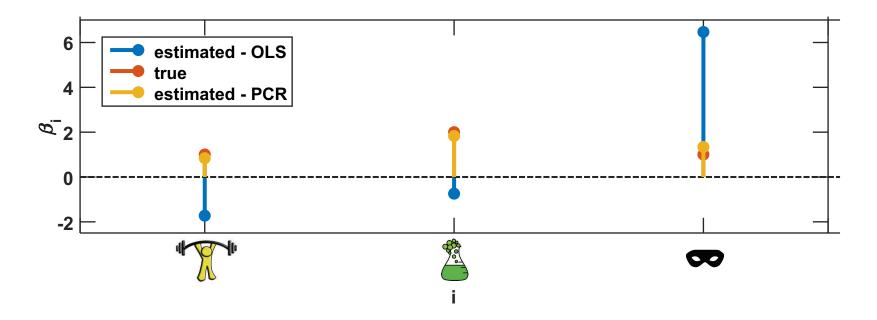
	-
54.0	
45.1	
13.3	+
49.5	
85 /	

	T
	59.1
	36.9
1	33.7
	59.7
	67.9

$$egin{bmatrix} oldsymbol{arepsilon}_1 & oldsymbol{arepsilon}_1 & oldsymbol{arepsilon}_2 & oldsymbol{arepsilon}_3 & oldsymbol{arepsilon}_4 & oldsymbol{arepsilon}_5 & old$$

Back to the Guardians

What happens if we use 2 components instead of 3?



Using only the principal components significantly improves our estimate!

Comparison with ridge regression and the lasso

- What similarities do you see?
 - Reduces dimensionality of the solution space (like Lasso)
 - Finds a solution in the space of all features (like RR)
 - Results can be difficult to interpret (like RR)

Problems with PCR

- We selected principal components based on predictors (not what we're trying to predict!)
- This could be problematic (why?)
 - What if the values you're trying to predict aren't correlated with the first few components?
 - You lose all predictive power!

