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Announcements 1/2

Presentation of the 
CS Major & Minors

TODAY @ lunch
Ford 240

FREE FOOD!



Announcements 2/2

CS Internship Lunch 
Presentations

Come hear where Computer Science majors 
interned in Summer 2017!

Employers range from companies in the 
tech industry to research labs.

All are welcome! Pizza lunch provided.

Thursday, 
October 26th
12:10 - 1 pm
Ford Hall 241

***Extra credit opportunity*** 
Want to drop a missing lab? Attend and post to #talks!



Outline

• Model selection: alternatives to least-squares
üSubset selection

üBest subset
üStepwise selection (forward and backward)
üEstimating error using cross-validation

• Shrinkage methods
- Ridge regression and the Lasso
- Dimension reduction

• Labs for each part



Flashback: subset selection

• Big idea: if having too many predictors is the problem  
maybe we can get rid of some

• Three methods:
- Best subset: try all possible combinations of predictors
- Forward: start with no predictors, greedily add one at a time
- Backward: start with all predictors, greedily remove one at a time

Common theme of subset selection: 
ultimately, individual predictors are either IN or OUT



Discussion

• Question: what potential problems do you see?
• Answer: we’re exploring the space of possible models as 

if there were only finitely many of them, but there are 
actually infinitely many (why?)



New approach: “regularization”

constrain 
the coefficients

Another way to phrase it:
reward models that shrink the 

coefficient estimates toward zero 
(and still perform well, of course)

subset 
selection

Y ≈ 𝛽$ + 𝛽&X& + ⋯+ 𝛽)X)



Approach 1: ridge regression

• Big idea: minimize RSS plus an additional penalty that 
rewards small (sum of) coefficient values
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* In statistical / linear algebraic parlance, this is an ℓ2 penalty
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Approach 1: ridge regression

• For each value of λ, we only have to fit one model

• Substantial computational savings over best subset!
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Approach 1: ridge regression

• Question: what happens when the 
tuning parameter is small?

• Answer: just minimizing RSS; simple least-squares
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Approach 1: ridge regression

• Question: what happens when the 
tuning parameter is large?

• Answer: all coefficients go to zero; turns into null model
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Ridge regression: caveat

• RSS is scale-invariant*
• Question: is this true of the shrinkage penalty?

• Answer: no! This means having predictors at different scales 
would influence our estimate… need to first standardize the 
predictors by dividing by the standard deviation 

* multiplying any predictor by a constant doesn’t matter
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Discussion

• Question: why would ridge regression improve the fit 
over least-squares regression?

• Answer: as usual, comes down to bias-variance tradeoff
- As λ increases, flexibility decreases: ↓ variance, ↑ bias
- As λ decreases, flexibility increases: ↑ variance, ↓ bias
- Takeaway: ridge regression works best in situations where least 

squares estimates have high variance: trades a small increase in bias 
for a large reduction in variance



So what’s the catch?

• Ridge regression doesn’t actually perform variable selection
• Final model will include all predictors
- If all we care about is prediction accuracy, this isn’t a problem
- It does, however, pose a challenge for model interpretation

• If we want a technique that actually performs variable 
selection, what needs to change?



* In statistical / linear algebraic parlance, this is an ℓ1 penalty

Approach 2: the lasso

• (same) Big idea: minimize RSS plus an additional 
penalty that rewards small (sum of) coefficient values
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Discussion

• Question: why does that enable us to get coefficients 
exactly equal to zero?



Answer: let’s reformulate a bit

• For each value of λ, there exists a value for s such that:

• Ridge regression:

• Lasso:
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Ridge regression Lasso

Comparting constraint functions



Comparting constraint functions

Ridge regression Lasso

Coefficient
estimates

Common RSS
contours



Comparing ridge regression and the lasso

• Efficient implementations for both (in R and python!)
• Both significantly reduce variance at the expense of a 

small increase in bias
• Question: when would one outperform the other?

• Answer:
-When there are relatively many equally-important predictors, 

ridge regression will dominate
-When there are small number of important predictors and many 

others that are not useful, the lasso will win



Lingering concern…

• Question: how do we choose the right value of λ? 

• Answer: sweep and cross validate!
- Because we are only fitting a single model for each λ, we can afford 

to try lots of possible values to find the best (“sweeping”)
- For each λ we test, we’ll want to calculate the cross-validation error 

to make sure the performance is consistent 



Lab: ridge regression & the lasso

• To do today’s lab in R: glmnet

• To do today’s lab in python: <nothing new>

• Instructions and code:
[course website]/labs/lab10-r.html

[course website]/labs/lab10-py.html

• Full version can be found beginning on p. 251 of ISLR



Coming up

• Jordan is traveling next week
• Guest lectures: 
- Tuesday: “Data Wrangling in Python” with Ranysha Ware, MITLL
- Thursday: “ML for Population Genetics” with Sara Mathieson, CSC


