LECTURE 12

LINEAR MODEL SELECTION PT. 3

October 23, 2017
SDS 293: Machine Learning
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Announcements 1/2

Computer Science

Presentation of the
CS Major & Minors

TODAY @ lunch
Ford 240
FREE FOQOD!
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Announcements 2/2

\ CS Internship Lunch

Presentations

Come hear where Computer Science majors ThUFSdOg,
interned in Summer 2017!
o October 20th
Employers range from companies in the
tech industry to research labs. ]Q]Q - ] pm
All are welcome! Pizza lunch provided. Ford HQU QA,]

*k*

***Extra credit opportunity
Want to drop a missing lab? Attend and post to #talks!



e
Outline

Model selection: alternatives to least-squares

Shrinkage methods

Ridge regression and the Lasso

Labs for each part
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Flashback: subset selection

Big idea: if having too many predictors is the problem
maybe we can get rid of some

Three methods:
Best subset: try all possible combinations of predictors
Forward: start with no predictors, greedily add one at a time
Backward: start with all predictors, greedily remove one at a time

Common theme of subset selection:
ultimately, individual predictors are either IN or OUT



o
Discussion

- Question: what potential problems do you see?

- Answer: we're exploring the space of possible models as
If there were only finitely many of them, but there are
actually infinitely many (why?)




e
New approach: “regularization”

subset
selection
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constrain
the coefficients

Another way to phrase it:
reward models that shrink the

coefficient estimates toward zero
(and still perform well, of course)
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Approach 1: ridge regression

Big idea: minimize RSS plus an additional penalty that
rewards small (sum of) coefficient values
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* In statistical / linear algebraic parlance, this is an {, penalty
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Approach 1: ridge regression

For each value of A, we only have to fit one model

RSS Shrinkage
[ penalty
n D ' D |

2
Yi_,BO_E,Bjxij +/12,3j
=1 Jj=1 / Jj=1
Tuning
parameter

Substantial computational savings over best subset!
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Approach 1: ridge regression

Question: what happens when the
tuning parameter is small?
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Answer: just minimizing RSS; simple least-squares
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Approach 1: ridge regression

Question: what happens when the
tuning parameter is large?
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Answer: all coefficients go to zero; turns into null model
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Ridge regression: caveat

RSS is scale-invariant®
Question: is this true of the shrinkage penalty?

RSS Shrinkage
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Answer: no! This means having predictors at different scales
would influence our estimate... need to first standardize the
predictors by dividing by the standard deviation

* multiplying any predictor by a constant doesn’t matter



o
Discussion

- Question: why would ridge regression improve the fit
over least-squares regression?

- Answer: as usual, comes down to bias-variance tradeoff
- As )\ increases, flexibility decreases: | variance, 1 bias
- As \ decreases, flexibility increases: 1 variance, | bias

- Takeaway: ridge regression works best in situations where least
squares estimates have high variance: trades a small increase in bias
for a large reduction in variance
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So what's the catch?

- Ridge regression doesn’t actually perform variable selection

- Final model will include all predictors
- If all we care about is prediction accuracy, this isn't a problem
- It does, however, pose a challenge for model interpretation

- If we want a technique that actually performs variable
selection, what needs to change?
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Approach 2: the lasso

(same) Big idea: minimize RSS plus an additional
penalty that rewards small (sum of) coefficient values

RSS Shrinkage Requrds
 EEE—— penalty coefficients

close to zero
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* In statistical / linear algebraic parlance, this is an {, penalty



o
Discussion

- Question: why does that enable us to get coefficients
exactly equal to zero?
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Answer: let's reformulate a bit

For each value of A, there exists a value for s such that:
Ridge regression: .
mﬁin(RSS) subject to Z ,B]-Z <s
j=1

Lasso: 5

m[}n(RSS) subject to 2|,8j| <s
j=1
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Comparting constraint functions
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Ridge regression Lasso



Comparting constraint functions
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Comparing ridge regression and the lasso

Efficient implementations for both (in R and python!)

Both significantly reduce variance at the expense of a
small increase in bias

Question: when would one outperform the other?

Answer:
When there are relatively many equally-important predictors,
ridge regression will dominate

When there are small number of important predictors and many
others that are not useful, the lasso will win



-
Lingering concem...

- Question: how do we choose the right value of A?

- Answer: sweep and cross validate!

- Because we are only fitting a single model for each A, we can afford
to try lots of possible values to find the best (“sweeping”)

- For each A we test, we’ll want to calculate the cross-validation error
to make sure the performance is consistent
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Lab: ridge regression & the lasso

To do today’s lab in R: glmnet
To do today’s lab in python: <nothing new>

Instructions and code:

[course website]/labs/lab10-r.html

[course website]/labs/lab10-py.html

Full version can be found beginning on p. 251 of ISLR
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Coming up

Jordan is traveling next week

Guest lectures:
Tuesday: “Data Wrangling in Python” with Ranysha Ware, MITLL
Thursday: “ML for Population Genetics” with Sara Mathieson, CSC



