LECTURE 12: LINEAR MODEL SELECTION PT. 3

October 23, 2017
SDS 293: Machine Learning

Announcements 1/2

Computer Science

Presentation of the CS Major \& Minors

TODAY @ lunch Ford 240 FREE FOOD!

Silvana, Artemis, Marina and Kyra present their research posters at the Collaborations event, 4/22/17.

Announcements 2/2

CS Internship Lunch Presentations

Come hear where Computer Science majors interned in Summer 2017!

Employers range from companies in the tech industry to research labs.

All are welcome! Pizza lunch provided.

Outline

- Model selection: alternatives to least-squares
\checkmark Subset selection
\checkmark Best subset
\checkmark Stepwise selection (forward and backward)
\checkmark Estimating error using cross-validation
- Shrinkage methods
- Ridge regression and the Lasso
- Dimension reduction
- Labs for each part

Flashback: subset selection

- Big idea: if having too many predictors is the problem maybe we can get rid of some
- Three methods:
- Best subset: try all possible combinations of predictors
- Forward: start with no predictors, greedily add one at a time
- Backward: start with all predictors, greedily remove one at a time

Common theme of subset selection:
ultimately, individual predictors are either IN or OUT

Discussion

- Question: what potential problems do you see?
- Answer: we're exploring the space of possible models as if there were only finitely many of them, but there are actually infinitely many (why?)

New approach: "regularization"

Another way to phrase it:
reward models that shrink the coefficient estimates toward zero
(and still perform well, of course)

Approach 1: ridge regression

- Big idea: minimize RSS plus an additional penalty that rewards small (sum of) coefficient values

[^0]
Approach 1: ridge regression

- For each value of λ, we only have to fit one model

- Substantial computational savings over best subset!

Approach 1: ridge regression

- Question: what happens when the tuning parameter is small?

- Answer: just minimizing RSS; simple least-squares

Approach 1: ridge regression

- Question: what happens when the tuning parameter is large?

- Answer: all coefficients go to zero; turns into null model

Ridge regression: caveat

- RSS is scale-invariant*
- Question: is this true of the shrinkage penalty?

- Answer: no! This means having predictors at different scales would influence our estimate... need to first standardize the predictors by dividing by the standard deviation

Discussion

- Question: why would ridge regression improve the fit over least-squares regression?
- Answer: as usual, comes down to bias-variance tradeoff
- As λ increases, flexibility decreases: \downarrow variance, \uparrow bias
- As λ decreases, flexibility increases: \uparrow variance, \downarrow bias
- Takeaway: ridge regression works best in situations where least squares estimates have high variance: trades a small increase in bias for a large reduction in variance

000000

So what's the catch?

- Ridge regression doesn't actually perform variable selection
- Final model will include all predictors
- If all we care about is prediction accuracy, this isn't a problem
- It does, however, pose a challenge for model interpretation
- If we want a technique that actually performs variable selection, what needs to change?

Approach 2: the lasso

- (same) Big idea: minimize RSS plus an additional penalty that rewards small (sum of) coefficient values

Discussion

- Question: why does that enable us to get coefficients exactly equal to zero?

Answer: let's reformulate a bit

- For each value of λ, there exists a value for s such that:
- Ridge regression:

$$
\min _{\beta}(R S S) \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2} \leq s
$$

- Lasso:

$$
\min _{\beta}(R S S) \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq s
$$

Comparting constraint functions

Ridge regression

Lasso

Comparting constraint functions

Comparing ridge regression and the lasso

- Efficient implementations for both (in R and python!)
- Both significantly reduce variance at the expense of a small increase in bias
- Question: when would one outperform the other?
- Answer:
- When there are relatively many equally-important predictors, ridge regression will dominate
- When there are small number of important predictors and many others that are not useful, the lasso will win

Lingering concern...

- Question: how do we choose the right value of λ ?
- Answer: sweep and cross validate!
- Because we are only fitting a single model for each λ, we can afford to try lots of possible values to find the best ("sweeping")
- For each λ we test, we'll want to calculate the cross-validation error to make sure the performance is consistent

Lab: ridge regression \& the lasso

- To do today's lab in R: glmnet
- To do today's lab in python: <nothing new>
- Instructions and code:
[course website]/labs/lab10-r.html
[course website]/labs/lab10-py.html
- Full version can be found beginning on p. 251 of ISLR

Coming up

- Jordan is traveling next week
- Guest lectures:
- Tuesday: "Data Wrangling in Python" with Ranysha Ware, MITLL
- Thursday: "ML for Population Genetics" with Sara Mathieson, CSC

[^0]: * In statistical / linear algebraic parlance, this is an ℓ_{2} penalty

