LECTURE 11: LINEAR MODEL SELECTION PT. 2

October 18, 2017 SDS 293: Machine Learning

Announcements 1/2

CS Internship Lunch Presentations

Come hear where Computer Science majors interned in Summer 2017!

Employers range from companies in the tech industry to research labs.

All are welcome! Pizza lunch provided.

Thursday, October 26th 12:10 - 1 pm Ford Hall 241

Extra credit opportunity Want to drop a missing lab? Attend and post to #talks!

Announcements 2/2

Computer Science

Silvana, Artemis, Marina and Kyra present their research posters at the Collaborations event, 4/22/17.

Presentation of the **CS Major & Minors**

Monday @ lunch Ford 240 FREE FOOD!

Correcting a fuzzy statement

Outline

- Model selection: alternatives to least-squares
- Subset selection
 - Best subset
 - Stepwise selection (forward and backward)
 - Estimating error using cross-validation
- Shrinkage methods
 - Ridge regression and the Lasso
 - Dimension reduction

Labs for each part

Flashback: subset selection

• **Big idea:** if having too many predictors is the problem maybe we can get rid of some

- Three methods:
 - Best subset: try all possible combinations of predictors
 - Forward: start with no predictors, greedily add one at a time
 - Backward: start with all predictors, greedily remove one at a time

"greedy" =

Add/remove whichever predictor improves your model **right now**

Flashback: comparing methods

	Best Subset Selection	Forward Selection	Backward Selection
How many models get compared?	2^p	$1 + \frac{p(p+1)}{2}$	$1 + \frac{p(p+1)}{2}$
Benefits?	Provably optimal	Inexpensive	Inexpensive; doesn't ignore interaction
Drawbacks?	Exhaustive search is expensive	Not guaranteed to be optimal; ignores interaction	Not guaranteed to be optimal; breaks when <i>p</i> > <i>n</i>

Flashback: choosing the optimal model

- We know measures of training error (RSS and *R*²) aren't good predictors of test error (what we actually care about)
- Two options:
 - We can **indirectly** estimate test error by making an adjustment to the training error to account for the bias:

$$R_{adj}^2$$
 C_p AIC BIC

Pros: inexpensive to compute **Cons:** makes additional assumptions about the model

- We can **directly** estimate the test error, using either a validation set approach or a cross-validation approach

Validation set: how would this work?

Discussion: potential problems?

Only training on a subset of the data means our model is less accurate

Cross-validation: how would this work?

Time to get our hands dirty

Lab: subset selection using validation

- To do today's lab in R: <nothing new>
- To do today's lab in python: <nothing new>
- Instructions and code for part 1:

http://www.science.smith.edu/~jcrouser/SDS293/labs/lab9.html

- Full version can be found beginning on p. 248 of ISLR
- For part 2:
 - Apply these techniques to a dataset of your choice
 - You're welcome (encouraged?) to work in teams!

Coming up

- Reminder: A4 due tonight by 11:59pm
- Monday: "shrinkage methods"
 - ridge regression
 - the lasso