
LECTURE 10:
LINEAR MODEL SELECTION PT. 1
October 16,  2017
SDS 293: Machine Learning



Outline

• Model selection: alternatives to least-squares
• Subset selection
- Best subset
- Stepwise selection (forward and backward)
- Estimating error

• Shrinkage methods
- Ridge regression and the Lasso
- Dimension reduction

• Labs for each part



Back to the safety of linear models…

Y ≈ β0 +β1X1 +...+βpXp



Back to the safety of linear models…

Y ≈ β0 +β1X1 +...+βpXp



Flashback: minimizing RSS

0 50 100 150 200 250 300

5
1
0

1
5

2
0

2
5

TV

S
a
le

s



Discussion

Why do we minimize RSS?
(…have you ever questioned it?)



What do we know about least-squares?

• Assumption 1: we’re fitting a linear model
• Assumption 2: the true relationship between the 

predictors and the response is linear

What can we say about the bias 
of our least-squares estimates?



What do we know about least-squares?

• Assumption 1: we’re fitting a linear model
• Assumption 2: the true relationship between the 

predictors and the response is linear
• Case 1: the number of observations is much larger than 

the number of predictors (n>>p)

What can we say about the variance
of our least-squares estimates?



What do we know about least-squares?

• Assumption 1: we’re fitting a linear model
• Assumption 2: the true relationship between the 

predictors and the response is linear
• Case 2: the number of observations is not much larger 

than the number of predictors (n≈p)

What can we say about the variance
of our least-squares estimates?



What do we know about least-squares?

• Assumption 1: we’re fitting a linear model
• Assumption 2: the true relationship between the 

predictors and the response is linear
• Case 3: the number of observations is smaller than the 

number of predictors (n<p)

What can we say about the variance
of our least-squares estimates?



Bias vs. variance



Discussion

How could we 
reduce the variance? 



Subset selection

• Big idea: if having too many predictors is the problem  
maybe we can get rid of some

• Problem: how do we choose?



Flashback: superhero example

Image credit: Ming Malaykham
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Best subset selection: try them all!



Finding the “best” subset

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1,2, … , 𝑝:
a. Fit all (p choose k) models that contain exactly p predictors.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Discussion

Question 1: why not just use the one with the lowest RSS?

Answer: because you’ll always wind up choosing the 
model with the highest number of predictors (why?)



Discussion

Question 2: why not just calculate the cross-validated 
prediction error on all of them?

Answer: so… many... models...



A sense of scale…

• We do a lot of work in groups in this class
• How many different possible groupings are there?

• Let’s break it down:
47 individual people

1,081 different groups of two
16,215 different groups of three…



Model overload

• Number of possible models on a set of p predictors:

• On 10 predictors: 1,024 models
• On 20 predictors: 1,048,576 models
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A bigger problem

Question: what happens to our estimated coefficients as 
we fit more and more models?

Answer: the larger the search space, the larger the 
variance. We’re overfitting!



What if we could eliminate some?



A slightly larger example (𝑝 = 5)

{  }

A  B  C  D  E

AB  AC  AD  AE  BC  BD  BE  CD  CE  DE

ABC  ABD  ABE  ACD  ACE  ADE  BCD  BCE  BDE  CDE

ABCD  ABCE  ABDE  ACDE  BCDE

ABCDE



Best subset selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1	, 2, … , 𝑝:
a. Fit all (𝑝	𝑐ℎ𝑜𝑜𝑠𝑒	𝑘) models that contain exactly 𝑝 predictors.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Forward selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1	, 2, … , 𝑝:
a. Fit all (𝑝 − 𝑘)	models that augment Mk-1 with exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Stepwise selection: way fewer models

• Number of models we have to consider:

• On 10 predictors: 1024 models à 51 models
• On 20 predictors: over 1 million models à 211 models
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Forward selection

Question: what potential problems do you see?

Answer: there’s a risk we might prune an important 
predictor too early. While this method usually does well in 
practice, it is not guaranteed to give the optimal solution.



Forward selection

Start with the null model M0 (containing no predictors)

1. For 𝑘	 = 	1,2, … , 𝑝:
a. Fit all (𝑝 − 𝑘) models that augment Mk-1 with exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Backward selection

Start with the full model Mp (containing all predictors)

1. For 𝑘	 = 	𝑝, (𝑝 − 1),… , 1:
a. Fit all k models that reduce Mk+1 by exactly 1 predictor.
b. Keep only the one that has the smallest RSS (or equivalently  

the largest R2). Call it Mk.

2. Select a single “best” model from among M0 … Mp using 
cross-validated prediction error or something similar.



Forward selection

Question: what potential problems do you see?

Answer: if we have more predictors than we have 
observations, this method won’t work (why?)



Choosing the optimal model

• Flashback: measures of training error (RSS and R2) 
aren’t good predictors of test error (what we care about)

• Two options:
1. We can directly estimate the test error, using either a validation 

set approach or cross-validation
2. We can indirectly estimate test error by making an adjustment 

to the training error to account for the bias



Adjusted R2

• Intuition: once all of the useful variables have been 
included in the model, adding additional junk variables will 
lead to only a small decrease in RSS

• Adjusted R2 pays a penalty for unnecessary variables in 
the model by dividing RSS by (n-d-1) in the numerator

R2 =1− RSS
TSS

→ RAdj
2 =1− RSS / (n− d −1)

TSS / (n−1)



Estimate of the variance
of the error terms

AIC, BIC, and Cp

• Some other ways of penalizing RSS

Cp =
1
n

RSS + 2dσ̂ 2( )

AIC = 1
nσ̂ 2 RSS + 2dσ̂ 2( )

BIC = 1
n

RSS + log(n)dσ̂ 2( )

Proportional for 
least-squares models

More severe penalty 
for large models



Adjust or validate?

Question: what are the benefits and drawbacks of each?

Adjusted measures Validation

Pros Relatively inexpensive to 
compute

More direct estimate (makes 
fewer assumptions)

Cons
Makes more assumptions 
about the model – more 
opportunities to be wrong

More expensive: requires 
either cross validation or a 
test set



Lab: subset selection

• To do today’s lab in R: leaps
• To do today’s lab in python: itertools, time

• Instructions and code:
[course website]/labs/lab8-r.html

[course website]/labs/lab8-py.html

• Full version can be found beginning on p. 244 of ISLR



Coming up

• Estimating error with cross-validation
• A3 due tonight by 11:59pm

• A4 out, due Oct. 20th


