Outline

- Lab: comparing classification approaches
- Evaluating models
 - Today: validation set
 - Monday: resampling
60 min: comparing classification methods

• Work in teams of 2-4 people (3 is ideal)
• **Goal:** to deepen our understanding of how the 4 classification methods we’ve discussed measure up
 - K-nearest neighbors
 - Logistic regression
 - LDA
 - QDA

• Instructions:
 http://www.science.smith.edu/~jcrouser/SDS293/labs/lab6.html

• You can check your intuition against p.153-4 of ISLR
Discussion: classification methods

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Logistic Regression</th>
<th>K-nearest neighbors</th>
<th>LDA</th>
<th>QDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>(√)</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td>(√)</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Scenario 3</td>
<td>√</td>
<td></td>
<td>(√)</td>
<td>x</td>
</tr>
<tr>
<td>Scenario 4</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>x</td>
<td>(√)</td>
<td>x</td>
<td>√</td>
</tr>
<tr>
<td>Scenario 6</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Rough guide to choosing a method

Is the decision boundary linear?

- YES
 - Are the observations normally distributed?
 - YES
 - Start with LDA
 - NO
 - Start with Logistic Regression
 - NO
 - Do you have limited training data?
 - YES
 - Start with QDA
 - NO
 - Start with K-Nearest Neighbors
Test vs. training

• In all of these methods, we evaluate performance using **test error** rather than training error (why?)
• **Real life:** if the data comes in stages (i.e. trying to predict election results), we have a natural “test set”
• **Question:** when that’s not the case, what do we do?
• **Answer:** set aside a “validation set”
What to set aside?

- **Smarket**: used years 2001-2004 to train, tested on 2005
- **Caravan**: used the first 1000 records as test
- **Carseats**:
 - some of you split the data in half
 - some sampled randomly
 - some split on one of the predictors (population>300, sales>7, etc.)

Question: did it make a difference?
Answer: absolutely

- **Example**: Auto dataset (392 observations)
- **Goal**: use linear regression to predict mpg using polynomial \(f(\text{horsepower}) \)
- Randomly split into 2 sets of 196 obs. (test and training)

Huge variation in prediction accuracy!
Issues with the “validation set” approach

1. The **test error rate** depends heavily on which observations are used for training vs. testing

2. We’re only training on a **subset** of the data (why is this a problem?)

We need a new approach...
Coming up

- Monday: Resampling Methods
- A2 due tonight
- A3 posted, due Wednesday Oct. 11th by 11:59pm