LECTURE 07:

CLASSIFICATION PT. 3

October 02, 2017
SDS 293: Machine Learning

Slides by R.J. Crouser, with a diversion by B.A. Miller
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Outline

Motivation
Bayes classifier
K-nearest neighbors

Logistic regression
Logistic model
Estimating coefficients with maximum likelihood
Multivariate logistic regression
Multiclass logistic regression
Limitations

Linear discriminant analysis (LDA)
Bayes’ theorem
LDA on one predictor
LDA on multiple predictors

Comparing Classification Methods



Image credit: Rune Anderson
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Recap: linear regression
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Recap: logistic regression
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Recap: logistic regression

Question: what were we tying to do using the logistic

function?
eﬁo +3X

Po+bX

p(X)= l+e

Answer: estimate the conditional distribution of the
response, given the predictors



o
Discussion

- What could go wrong?




e
Flashback: superheroes

According to this sample, we can perfectly
predict the 3 classes using only:




e
Flashback: superheroes




Perfect separation

If a predictor happens to perfectly align with the response,
we call this perfect separation

When this happens, logistic regression will grossly
inflate the coefficients of that predictor (why?)

p=— TTe)<[1(1-p(x)

1 + eﬁo+ﬁ1x iy =1 joyj=1

Warning message:
glm.fit: fitted probabilities numerically © or 1 occurred




R
Another approach

We could try modeling the distribution of the predictors in
each class separately:

f(X)=Pr(X=x1Y =k)

“density function of X"

How would this help?



R
Refresher: Bayes' rule

Pr(BIA) xPr(A)
Pr(B)

Pr(AlB)=



R
Refresher: Bayes' rule

The probability | Given that tt The probability that
Given that we obg observe predictor true class is| the true class is k

predictor vector x

¥ Pr(X=x1Y=k)xPr(Y=k)

Pr(Y=k|X=x)=
4 Pr(X = x)
The probability that f
the true class is k The probability that we

observe predictor vector x




R
Refresher: Bayes' rule

This isn’t too hard
to estimate*

oo APr(X=x1Y=k)xPr(Y =k)

Just need to estimate
the density function! /F—I’M/

Pr(X =x1Y =k)xPr(Y =k)

Pr

J

*Assuming our training data is randomly sampled



Flashback: toy example
Bayes’ Decision Boundary

Pr(Y =orangetX)>50% /
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e
Using Bayes' rule for classification

Let’'s start by assuming we have just a single predictor

In order to estimate f,(X), we’'ll need to make some
assumptions about its form



e
Assumption 1: f(X) is normally distributed

If the density is normal (a.k.a. Gaussian), then we can
calculate the function as:
-1
( 2><(x—uk)2)

20;

|
fk(x)=\/ﬂ*a X e

where u, and ¢, are the mean & variance of the k" class



R
Assumption 2: classes have equal variance

For simplicity, we'll also assume that:

2 2
O'l =...=O'K

That gives us a single variance term, which we’ll denote

02



Graphically
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Plugging in...

(Y k) \/710 xez"k*

pk('x L,

‘g (o-at)
S i)

1I€K

For our purposes, this is a constant!



R
More algebral

So really, we just need to maximize:

1
Pr(Y =k
=) e,

Sy

O, (x)=xx g’; - 2‘2‘2 +10g(Pr(Y=k))

2
_ﬁ*(x—‘uk )

This is called a discriminant function of x



Okay, we need an example

Bayes’ Decision Boundary at x=0

:/: W ou=-125
: W ou, =125
|

! ol =0, =

~
Pupay
~ X
Il Il
\S N
hr
o O
(N N




N
LDA: estimating the mean

As usual, in practice we don’t know the actual values for
the parameters and so we have to estimate them

The linear discriminant analysis method uses the
following:
n 1
W =— E X
ny iy =k

(the average of all the training examples from class k)



N
LDA: estimating the variance

Then we'll use that estimate to get:

n— KEEX =

K 1y=

(weighted average of the sample variances of each class)



Flashback
This isn’t too hard
Remember that time | said: to estimate”
Pr(X=x1Y=k)xPr(Y =k
Pr(Y=k|X=x)= (X = x J<Pr(¥ =k)
Pr(X = x)

If we don’t have additional knowledge about the class
membership distribution:

*Assuming our training data is randomly sampled



e
LDA classifier

The LDA classifier plugs in all these estimates, and assign
the observation to the class for which

A A2
O, (x) = x*%— 2‘1/22 +log(7,)

Is the largest

The linear in LDA comes from the fact that this equation is
linear in x



e
Quick recap: LDA

- LDA on 1 predictor makes 2 assumptions: what are they?
1. Observations within class are normally distributed
2. All classes have common variance

- S0 what would we need to change to make this work with
multiple predictors?




e
LDA on multiple predictors

- Nothing! We just assume the density functions are
multivariate normal:

uncorrelated correlation = 0.7



e
LDA on multiple predictors

Well okay, not nothing...

What happens to the mean?

w, : scalar — vector

What happens to the variance?

o’ : scalar — COV(X)  matrix



e
Quick recap: LDA

All classes have common variance ¢ What can we do about
This second assumption?




R
Quadratic discriminant analysis

What if we relax the assumption that the classes have
uniform variance?

COV(X) — Cov, (X) for each k

If we plug this into Bayes’, we get:

- e s -

0, (x) = —E(x — Mk)T Cov, (X) 1 (x - Mk) + log(nk)

M\ultiplying two x terms toget£
hence “quadratic”




e
Discussion: QDA vs. LDA

- Question: why does it matter whether or not we assume
that the classes have common variance?

- Answer: bias/variance trade off
- One covariance matrix on p predictors = p(p+1)/2 parameters

- The more parameters we have to estimate, the higher variance in
the model (but the lower the bias)




A diversion: Detection theory

Detection theory is more traditionally considered in
electrical engineering contexts
Radar, communications, biosurveillance sensors

But the problem is the same as we consider here:
discriminate signal from noise
Think of “signal” and “noise” as two classes

The typical context, however, is different
Usually the classes are highly imbalanced



L
Class imbalance

Overall error rate is one metric for performance
It doesn’t consider potential tradeoffs

In a “detection” setting, only one class is interesting

Labeling something “noise” is saying, in effect, “I don’t care about
this observation”

In this scenario, when noise is misclassified as signal, it's
called a “false alarm” or “false positive”

Example: determining someone will default on their loan when they
won't



e
Receiver operating characteristic (ROC)

ROC curves demonstrate the tradeoff between false positives
and false negatives

Perfect detection is achievable when the curves touches (1,1)
Random assignment tracks the diagonal dotted line



L
Class balance

5 4 3 -2 1 0 1 2 3 4 5

Let’s visually weight the pdfs by class size

Suppose we have the ROC curve above for two balanced
classes



Class balance

?

5 4 3 -2 -1 0 1 2 3 4 5

Let’s visually weight the pdfs by class size

Suppose we have the ROC curve above for two balanced
classes

How will it change if the class balance changes?



ROC curves don't change with class balance!

TPR = Pr(classify as pos. | is pos.)
FPR = Pr(classify as pos. | is neg.)

Probability of true positive and false positive are conditioned on the
true state

The conditional distributions don’t change based on class balance

(Aside: this is not the case for precision and recall, which you can
read about in the book if you're interested)



Constant false alarm rate

- False alarms can be expensive
- May require staff time to investigate a benign incident

- In a resource-constrained environment, a common
practice is to set the number of false alarms that can be

tolerated
- So what should we do?




Constrained optimization for detection

Datapoint x: how many measurements to you get per unit
time?
E.g., credit applications per day, radar returns per second

Datapoint y: how many false alarms can you tolerate per
unit time?

Worst case scenario: there’s nothing to detect; any
detections are false alarms

Set false positive rate to y/x

Now you have your false alarm rate, so maximize your
detection rate



Maximizing the probability of detection

There is a certain region of the measurement space
where we will declare a detection
Everywhere else we won't

TPR = [ _.p1(x)dx

FPR = [ _.p(x)dx
Want to maximize TPR + A(FPR — «), where « is the desired false

alarm rate
(Trust me for now, but if you're curious as to why, come ask after the
lecture)



Maximizing the probability of detection

It turns out we don’t even have to do any calculus!
TPR + A(FPR — a)

= (J p1(x) dx) +/1<f D, (x) dx—a)
XER XER

= (p1(x) + Ap2(x)) dx — Aa

X€ER
No restrictions exist on the region

To maximize this quantity set R to everywhere the
integrand is positive!

p1(x) + Ap2(x) > 0= p1(x)/p2(x) > -4

(Then set A to achieve the desired FPR)



R
Q: Why am | talking about this here?

A1: just to provide a different perspective

A2:. Because the same mathematical principles are at
work as with LDA and QDA

What's the optimal detector for two Gaussians?

_(x—u21)2
L (207)
(x) Zna%e 1 o Gooug)®_Comig)”
2 2
o~ €= g € e U ) >
2 1, () 1
2105

(x — .Uz)2 B (x — .Ul)z

> Inc
(202 (207

— lno, —Inog; +




R
Q: Why am | talking about this here?

What happens if the variances are the same?

(x—p2)* . (x—p1)*
(203)  (207)
= 2(py — p)x + (U5 — uf —20%Inc) >0
A line optimally discriminates between signal and noise!

And if they’re different?

Ino, —Inoy + > Inc

(x—p2)*  (x—u1)?
(203)  (207)
(of —05)x* + 2(05 g — of py)x

o
+ (012115 — ofut + 20i0; lnﬁ) > 0
1

>lnec =

Ino, —Inoy +

Use a quadratic!

This generalizes to higher dimensions



This can be a little counterintuitive

If the variance is different for signal and noise, a threshold is
not the best you can do

Consider these distributions:

oL 1 1 1 1 11

-6 -4 -2 0 2 4 6
The variance of the signal is greater than the variance of the
noise

So there are actually values that are so small they should be classified
as signal!

If the signal variance were smaller, there would be values so /arge they
should be classified as noise

(These are often so far in the tails that they’re extremely unlikely)



e
Lab: LDA and QDA

To do today’s lab in R: nothing new
To do today’s lab in python: nothing new

Instructions and code:

[course website]/labs/lab5-r.html

[course website]/labs/lab5-py.html

You'll notice that the labs are beginning to get a bit more
open-ended — this may cause some discomfort!
Goal: to help you become more fluent in using these methods

Ask questions early and often: of me, of each other, of whatever
resource helps you learn!

Full version can be found beginning on p. 161 of ISLR



e
Coming up

Wednesday- last day of classification: comparing
methods

Solutions for A1 have been posted to the course website
and Moodle

A2 due on Wednesday Oct. 4" by 11:59pm



