LECTURE 05:

CLASSIFICATION PT. 1

September 25, 2017

SDS 293: Machine Learning

Q&A: homework format

Q: What file format should we use for our homework?

A: PDF is fine for conceptual exercises; Jupyter notebook is preferable for applied exercises but .Rmd and .py are also acceptable

Q&A: confidence vs. prediction intervals

Q: Problem 3.8 asks for the predicted **mpg** of a car with 98 **horsepower**, and then asks for the associated prediction and confidence intervals. I thought that for single number predictions you could only use prediction intervals and confidence intervals were for means and coefficients?

A: Let's step back and consider what each one is telling us:

Q&A: confidence vs. prediction intervals

Confidence interval

We have 95% confidence that the

mean of all samples with these predictors

will fall within this interval

Prediction interval

We have 95% confidence that the

next sample with these predictors

will fall within this interval

Outline

- Motivation
- Bayes classifier
- K-nearest neighbors
- Logistic regression
 - Logistic model
 - Estimating coefficients with maximum likelihood
 - Multivariate logistic regression
 - Multiclass logistic regression
 - Limitations
- Linear discriminant analysis (LDA)
 - Bayes' theorem
 - LDA on one predictor
 - LDA on multiple predictors
- Comparing Classification Methods

Motivation

So far: predicted quantitative responses

$$height = \beta_1 \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) + \beta_2 \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \beta_3 \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

Motivation

Question: what if we have a qualitative response?

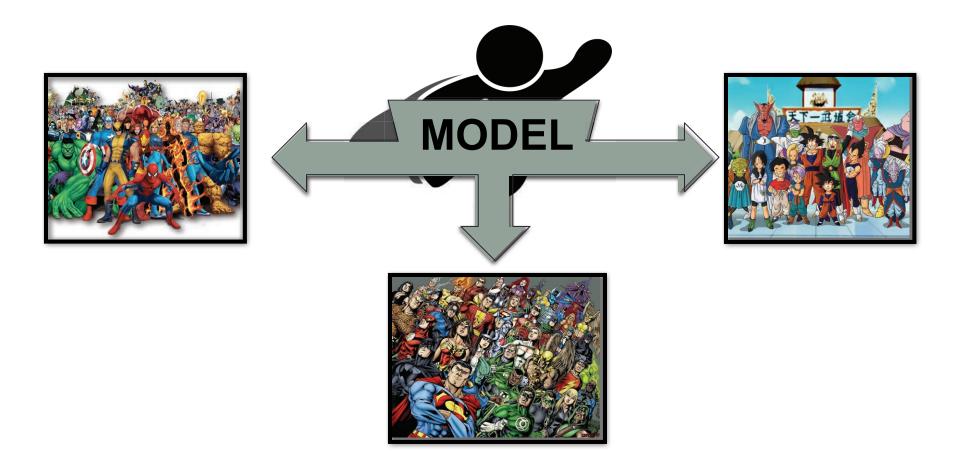
Motivation

Like in regression, we have a set of training observations:

 Want to build a model to predict the (qualitative) response for new observations

Classification

 Predicting a qualitative response for an observation can be thought of as classifying that observation



Quantifying accuracy

 With quantitative responses, we measured a model's accuracy using the mean squared error:

$$MSE = avg\left(\left(\hat{f}(x_0) - y_0\right)^2\right)$$

Problem: how do we take the difference of two classes

• **Solution:** we'll try to minimize the proportion of misclassifications (the *test error rate*) instead:

$$TE = avg(I(y_0 \neq \hat{y}_0))$$

Why won't linear regression work?

- LR only works on quantitative responses (why?)
- Could try approach we took with qualitative predictors:

$$Y = \begin{cases} 1 & if \\ 2 & if \\ 3 & if \end{cases}$$

What's the problem?

Why won't linear regression work?

Is it any better if we only have a binary response?

$$Y = \begin{cases} 0 & if \\ 1 & if \end{cases}$$

• In this case, how might we interpret $\beta_1 X$?

Bayes' classifier

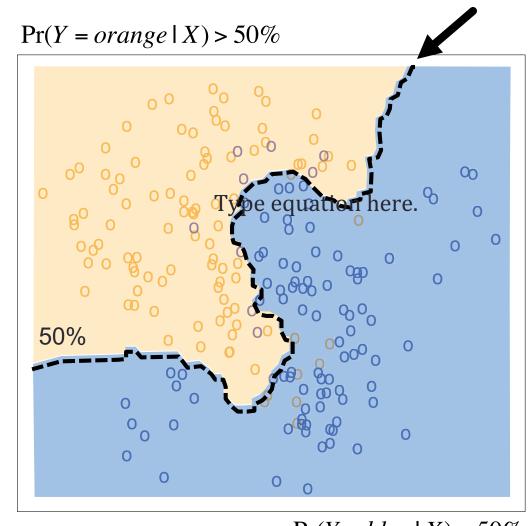
 A simple, elegant classifier: assign each observation to the most likely class, given its predictor values

• Mathematically: assign a test observation with predictor vector x_0 to the class j that maximizes:

$$\Pr(Y = j \mid X = x_0)$$

Toy example

Bayes' Decision Boundary



 $_{X_1} \Pr(Y = blue \mid X) > 50\%$

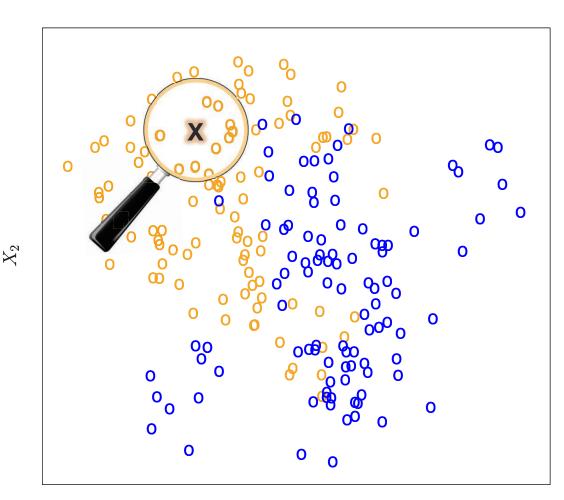
Bayes' classifier

Test error rate of the Bayes classifier:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X)\right)$$

- Great news! This error rate is provably* optimal!
- Just one problem...
- Okay, let's estimate!

Back to our toy example



 X_1

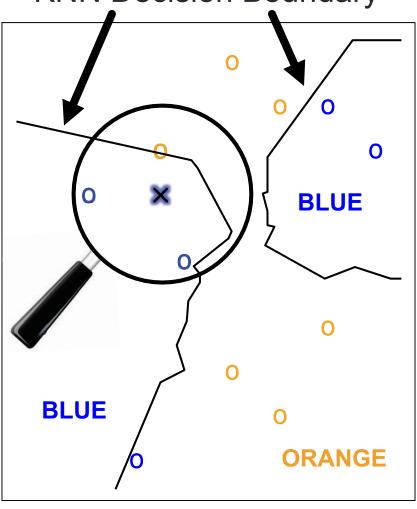
K-nearest neighbors

- **Input**: a positive integer K and a test value x_0
- Step 1: Identify the K training examples closest to x_0 (call them N_0)
- Step 2: Estimate:

$$\Pr(Y = j \mid X = x_0) \approx \frac{1}{k} \sum_{i \in N_0} I(y_i = j)$$

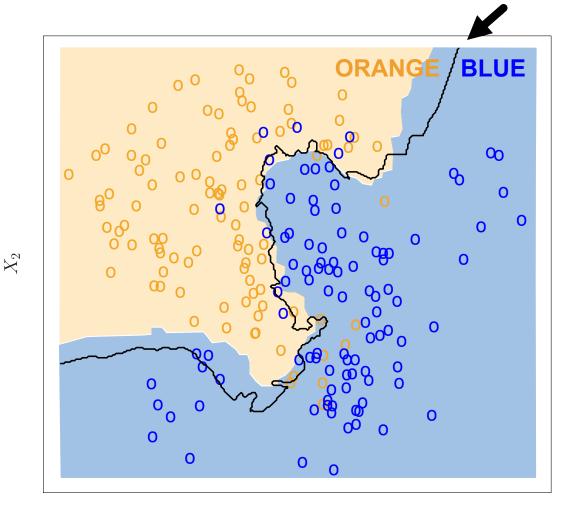
• Step 3: Assign x_0 to whichever class has the highest (estimated) probability

K-nearest neighbors example: K = 3



K-nearest neighbors example: K = 10

KNN Decision Boundary



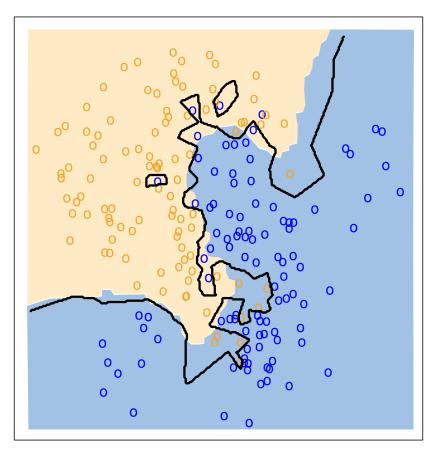
KNN vs. Bayes

- Despite being extremely simple, KNN can produce classifiers that are close to optimal (is this surprising?)
- **Problem:** what's the right *K*?
- Question: does it matter?

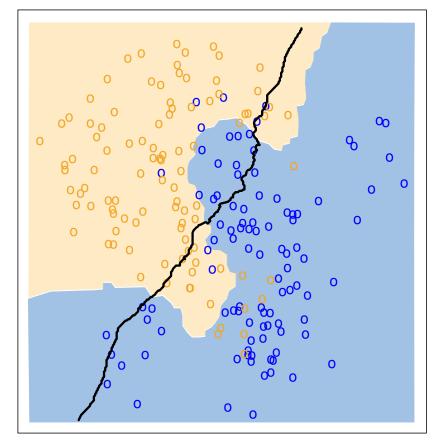
Choosing the right K

KNN: K=1

KNN: K=100

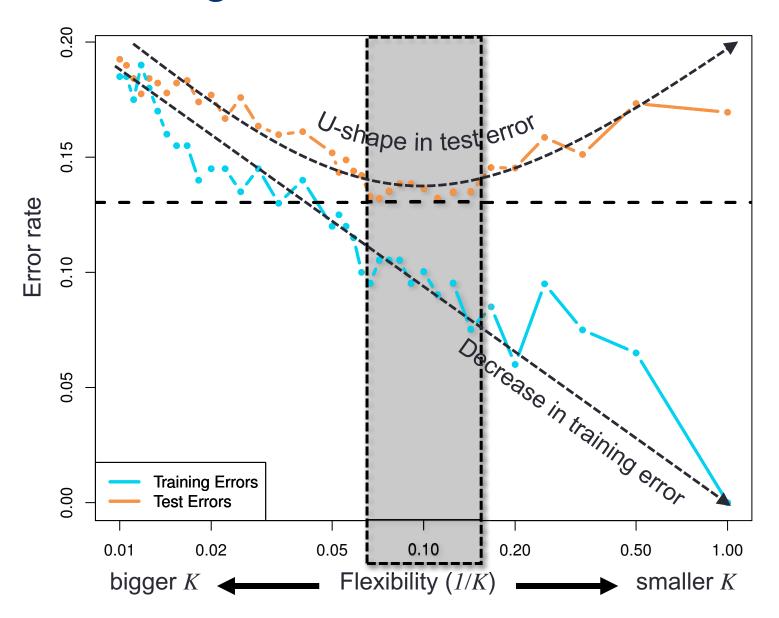


low bias, **high** variance TE = 0.1695



high bias, **low** variance TE = 0.1925

KNN training vs. test error



Lab: K-nearest neighbors

- To do today's lab in R: class package
- To do today's lab in python: pandas, numpy, sklearn
- Instructions and code:
 - http://www.science.smith.edu/~jcrouser/SDS293/labs/lab3.html
- Full version can be found beginning on p. 163 of ISLR
- Note: we're going a little out of order, so you may want to stick with the demo code

Discussion: KNN on quantitative responses

- Question 1: is there any reason we couldn't use KNN to predict quantitative responses?
- Question 2: what (if anything) would need to change?

$$\Pr(j \mid x_0) = \frac{1}{k} \sum_{i \in N_0} I(y_i = j) \longrightarrow \hat{f}(x_0) = \frac{1}{k} \sum_{i \in N_0} y_0$$

Question 3: how does it compare to LR?

LR vs. KNN

Linear Regression

- Parametric (meaning?)
 - We assume an underlying functional form for f(X)

Pros:

- Coefficients have simple interpretations
- Easy to do significance testing

Cons:

 Wrong about the functional form → poor performance

K-Nearest Neighbors

- Non-parametric (meaning?)
 - No explicit assumptions about the form for f(X)

Pros:

- Doesn't require knowledge about the underlying form
- More flexible approach

Cons:

 Can accidentally "mask" the underlying function

Discussion: which method?

- Question 1: would you expect LR to outperform KNN when the underlying relationship is linear? Why?
 - Yes: KNN won't get a reduction in bias as it increases in variance
- Question 2: what happens as the # of dimensions increases, but the # of observations stays the same?
 - "Curse of dimensionality": the more dimensions there are, the farther away each observation's "nearest neighbors" can be

Coming up

- Wednesday: Logistic regression
 - Logistic model
 - Estimating coefficients with maximum likelihood
 - Multivariate logistic regression
 - Multiclass logistic regression
 - Limitations
- A1 due Weds. 9/27 by 11:59pm (submit using Moodle)