LECTURE 05:

CLASSIFICATION PT. 1

September 25, 2017
SDS 293: Machine Learning



Q&A: homework format

Q: What file format should we use for our homework?

A: PDF is fine for conceptual exercises; Jupyter notebook is
preferable for applied exercises but .Rmd and .py are also
acceptable



Q&A: confidence vs. prediction intervals

Q: Problem 3.8 asks for the predicted mpg of a car with 98
horsepower, and then asks for the associated prediction
and confidence intervals. | thought that for single number
predictions you could only use prediction intervals and
confidence intervals were for means and coefficients?

A: Let’'s step back and consider what each one is telling us:



e
Q&A: confidence vs. prediction intervals

Confidence interval Prediction interval
We have 95% We have 95%
confidence that the confidence that the
mean of all samples next sample with
with these predictors these predictors
will fall within this will fall within this

Interval Interval
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Motivation

- So far: predicted quantitative responses

Image credit: Ming Malaykham



I
Motivation

Question: what if we have a qualitative response?




Motivation

Like in regression, we have a set of training observations:

Want to build a model to predict the (qualitative) response
for new observations



e
Classification

- Predicting a qualitative response for an observation can
be thought of as classifying that observation




e
Quantifying accuracy

With quantitative responses, we measured a model’s
accuracy using the mean squared error:

MSE = avg ((f(x0) = 0)°)

Problem: how do we take the difference of two classes

(IA-B)?

Solution: we’ll try to minimize the proportion of
misclassifications (the test error rate) instead:

TE = avg(I(yo # 9o))

*I(...) is an indicator function that outputs 1 if the input is true, 0 otherwise



R
Why won't linear regression work?

LR only works on quantitative responses (why?)

Could try approach we took with qualitative predictors:

Y=< 2 if

3 Remd

What's the problem?



R
Why won't linear regression work?

Is it any better if we only have a binary response?

In this case, how might we interpret 51X ?
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Bayes’ classifier

A simple, elegant classifier: assign each observation to
the most likely class, given its predictor values

Mathematically: assign a test observation with predictor
vector x, to the class j that maximizes:

Pr(Y =j | X = xp)



Toy eXample Bayes’ Decision Boundary

Pr(Y =orange| X) > 50% /

’
¢
i
t
1
)
- Q)
/’OOO\ 1'1 %
T}@)%e%mﬁ'@ﬂ ere. o
| 0]
0
M@, %00 o ©°
& y Vo o1y
i 8% o ’
-y %0 @%
50% "| OO o)
- -
00 "Ny ;t:@ @0
o v 4 00¢ Q
Y ~ o)
OO o 0% d) 0
0 ® o
0] o) 0

x, Pr(Y = bluel X) > 50%



e
Bayes’ classifier

Test error rate of the Bayes classifier:

1—F (m]axPr(Y = X))

Great news! This error rate is provably™ optimal!
Just one problem...

Okay, let’s estimate!

* proof left to the reader



Back to our toy example
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K-nearest neighbors

Input: a positive integer K and a test value x,

Step 1: Identify the K training examples closest to x,
(call them N,)

Step 2: Estimate:
1
Pr(Y = | X =x) % ) 10 =))

iEN
Step 3: Assign x, to whichever class has the highest
(estimated) probability



K-nearest neighbors example: K =3

KNN Decision Boundary

BLUE




K-nearest neighbors example: K =10
KNN Decision Boundary

X
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KNN vs. Bayes

Despite being extremely simple, KNN can produce
classifiers that are close to optimal (is this surprising?)

Problem: what's the right K7?

Question: does it matter?
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Choosing the right K

KNN: K=1 KNN: K=100

low bias, high variance high bias, low variance
TE = 0.1695 TE = 0.1925
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KNN training vs. test error
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Lab: K-nearest neighbors

To do today’s lab in R: c1ass package

To do today’s lab in python: pandas, numpy, sklearn

Instructions and code:
http://www.science.smith.edu/~jcrouser/SDS293/labs/lab3.html

Full version can be found beginning on p. 163 of ISLR

Note: we're going a little out of order, so you may want to
stick with the demo code
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Discussion: KNN on quantitative responses

- Question 1: is there any reason we couldn’t use KNN to
predict quantitative responses?

- Question 2: what (if anything) would need to change?
. A 1
Pr ]I)c0 El y; = _>f(xo)=—z)’o
lENO IEN,

- Question 3: how does it compare to LR?
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LR vs. KNN

Linear Regression K-Nearest Neighbors

Parametric (meaning?) Non-parametric

We assume an underlying (meaning?)

functional form for f(X) No explicit assumptions about
Pros: the form for f(X)

Coefficients have simple Pros:

interpretations Doesn’t require knowledge

Easy to do significance about the underlying form

testing More flexible approach
Cons: Cons:

Wrong about the functional Can accidentally “mask” the

form = poor performance underlying function
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Discussion: which method?

- Question 1: would you expect LR to outperform KNN
when the underlying relationship is linear? Why?
- Yes: KNN won'’t get a reduction in bias as it increases in variance

- Question 2: what happens as the # of dimensions
increases, but the # of observations stays the same?
- “Curse of dimensionality”: the more dimensions there are, the farther

) 13

away each observation’s “nearest neighbors” can be
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Coming up

Wednesday: Logistic regression
Logistic model
Estimating coefficients with maximum likelihood
Multivariate logistic regression
Multiclass logistic regression
Limitations

A1 due Weds. 9/27 by 11:59pm (submit using Moodle)



