LECTURE 04:

LINEAR REGRESSION PT. 2

September 20, 2017
SDS 293: Machine Learning
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Announcements

Stats TA hours start Monday (sorry for the confusion)

Looking for some refreshers on mathematical concepts?

The Spinelli Center has several coming up:
“Exponents & Logarithms” tonight (Sept. 20t")
“Trigonometry Review” on Thurs. Sept. 21st
...and several more!

Sessions run from 7-9pm in Seeyle 211

Evening office hours with Jordan:
Tuesdays 6-7pm
Ford 355

(will confirm on Slack each week)
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Outline

Motivation
Running Example: Advertising

Simple Linear Regression
Estimating coefficients
How good is this estimate?
How good is the model?

Multiple Linear Regression
Estimating coefficients
Important questions

3-minute activity: Dealing with Qualitative Predictors

Extending the Linear Model
Removing the additive assumption
Non-linear relationships

Potential Problems



3-minute activity: the Carseats data set




3-minute activity: the Carseats data set

Description: simulated data set on sales of car seats

Format: 400 observations on the following 11 variables
Sales: unit sales at each location
CompPrice: price charged by nearest competitor at each location
Income: community income level
Advertising: local advertising budget for company at each location
Population: population size in region (in thousands)
Price: price charged for car seat at each site
ShelveLoc: quality of shelving location at site (Good | Bad | Medium)
Age: average age of the local population
Education: education level at each location
Urban: whether the store is in an urban or rural location
USA: whether the store is in the US or not
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3-minute activity: the Carseats data set

1. Find a friend (or two)

2. Hypothesize 3 possible relationships between variables
in this dataset (e.g. higher Price predicts lower Sales)

Question: could you test that hypothesis
with the techniques you know right now?




e
Two-level qualitative predictors

({Pl:“enrolled”}, {P2:“”enrolled”}, {P3:”auditing”},...)
({Pl:1}, {P2:1}, {P3:0},..)
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Two-level qualitative predictors
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A note on dummy variables

The decision to code enrolled students as 7 and auditing
students as 0 is arbitrary

It has no effect on model fit, or on the predicted values

It does alter interpretation of the coefficients
If we swapped them, what would happen?
If we used (-1,1), what would happen?



Multi-level predictors

Need dummy variables for all but one level

For example:

v = :1 if the it" person is from Amherst
H kO if the jth person is not from Amherst
v — :1 if the it" person is from Mt. Holyoke
2 kO Lf the jth person is not from Mt. Holyoke

Bo + By + €; if ith person is from Amherst
Vi = Bo + B1Xi1 + Paxiz + € = Lo+ L, + € if jth person is from Mt.Holyoke

Lo +€; if it"h personis from Smithl

“baseline”
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Extending the linear model

The linear regression model provides nice, interpretable
results and is a good starting point for many applications

Thanks, Roger Hargreaves!




Assumption 1: independent effects

Think back to our model of the Advertising dataset

Coefficient  Std. error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
1ewspaper | : . - <599

11 |
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Reality: interaction effects

4 Sales

Balanced spending /
Between TV and Radio =
model underestimates

N\

Spend a lot on
either TV or Radio =
model overestimates
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Reality: interaction effects

Suppose that spending money on radio advertising
actually increases the effectiveness of TV advertising

This means that the slope term for Tv should increase as
radio increases

In the standard linear model, we didn’t account for that:
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Solution: interaction terms

- One solution: add a new term
Y = By + By Xradio + B, XTV + ,B3><(TV><radio)J+ €

- Question: how does this fix the problem?

slope for

radio

now depends
on the
value of TV
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Solution: Interaction terms

Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVXradio 0.0011 0.000 20.73 < 0.0001 |

p-value for TvxXradio is very low (indicating what?)

R2 without interaction term is 89.7%:; this model: 96.8%

diff. var. explained

by each model === (96.8 — 89.7)

var. missed e (100 — 89.7)
by first model

of the variability that our previous model missed
IS explained by the interaction term

= 69%



Important caveat
Coefficient  Std. error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
. 5() 7
TVXradio 0.0011 0.000 20.73 < 0.0001 )

In this case, p-values for all 3 predictors are significant

May not always be true!

Hierarchical principle: if we include an interaction term,
we should include the main effects too (why?)
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Assumption 2: linear relationships

LR assumes that there is a straight-line relationship
between the predictors and the response

If the true relationship is far from linear:
the conclusions we draw from a linear model are probably flawed
the prediction accuracy of the model is likely going to be pretty low



N
Assumption 2: linear relationships

For example, in the Auto dataset:
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Solution: polynomial regression

Simple approach: use polynomial transformations

mpg = 5, + ;X horsepower + 5, X horsepower? + ¢

Note: still a linear model!

(Want more? We've got some shinier non-linear models coming up in Ch. 7)
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How to tell if you need more power

Residuals plots can help identify problem areas in the
model (by highlighting patterns in the errors)

Ex. LR of mpg on horsepower in the Auto dataset:

Residuals
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Discussion: breaking LR

- What other problems might we run into when using LR?

- How could we fix them?




1. Correlated error terms

LR assumes that the error terms are uncorrelated

If these terms are correlated, the estimated standard error
will tend to underestimate the true standard error

What does this mean for the associated confidence
intervals and p-values?

Question: when might we want to be wary of this?
(hint: tick, tock...)
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How to tell if error terms are correlated

In the time-sampled case, we can plot the residuals from
our model as a function of time
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Uncorrelated errors = no discernable pattern
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2. Non-constant variance of error terms

LR assumes that error terms have constant variance:
Var(e;) = o°

Often not the case (e.g. error terms might increase with
the value of the response)

Non-constant variance in errors = heteroscedasticity



How to identify / fix heteroscedasticity

The residuals plot will show a funnel shape
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transform the response using a concave function (like /og or sqrt)
weight the observations proportional to the inverse variance
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3. Outliers

Outlier: an observation whose true response is really far
from the one predicted by the model

Sometimes indicate a problem with the model (i.e. a
missing predictor), or might just be a data collection error

Can mess with RSE and R?, which can lead us to
misinterpret the model’s fit



How to identify outliers

Residual plots can help identify outliers, but sometimes
it's hard to pick a cutoff point (how far is “too far’?)

Quick fix: divide each residual by dividing by its
estimated standard error (studentized residuals), and flag
anything larger than 3 in absolute value
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“Studentizing”™?

Named for English
statistician Wm. Gosset

Graduated from Oxford
with degrees in chemistry
and math in 1988

Published under the
pseudonym “Student”
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4. High leverage points

Outliers = unusual values in the response
High leverage points = unusual values in the predictor(s)

The more predictors you have, the harder they can be to
spot (why?)

These points can have a major impact on the least
squares line (why?), which could invalidate the entire fit



How to identify high leverage points

Compute the leverage statistic. For SLR:
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5. Collinearity

Problems can also arise when two or more predictor
variables are closely related to one another

Hard to isolate the individual effects of each predictor,
which increases uncertainty

This makes it harder to detect whether or not an effect is
actually present (why?)



N
Detecting collinearity

Look at the correlation matrix of the predictors

Auto dataset: just about everything is highly correlated

1 -0.7776175 -0.8051269 -0.7784268  -0.8322442 0.4233285 0.5805410

1 0.9508233 0.8429834  0.8975273 -0.5046834 -0.3456474
1 0.8972570  0.9329944 -0.5438005 -0.3698552

1 0.8645377 -0.6891955 -0.4163615

1 -0.4168392 -0.3091199

1 0.2903161

1

Caveat: this won’t help you find interactions between
multiple variables when no single pair is highly correlated
(called multicollinearity)
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Approaches for dealing with collinearity

Drop one of the problematic variables from the
regression (linearity implies they're redundant)

Combine the collinear variables together into a single
predictor



N
Lab: Linear Regression

To do today’s lab in R: car, MASS and ISLR packages

To do today’s lab in python: numpy, pandas and
statsmodels libraries

Instructions and code can be found at:

R version: [course website]/labs/lab2-r.html
Python version: [course website]/labs/lab2-py.html

Original version can be found beginning on p. 109 of ISLR
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Assignment 1

To get credit for today’s lab, please post a response to the
prompt posted to #lab2

Assignment 1 posted on course website and Moodle

Problems from ISLR 3.7 (p. 120-123)
Conceptual: 3.1, 3.4, and 3.6
Applied: 3.8, 3.10

Due Wednesday September 27 by 11:59pm



