
LECTURE 04:
LINEAR REGRESSION PT. 2
September 20, 2017
SDS 293: Machine Learning



Announcements

• Stats TA hours start Monday (sorry for the confusion)
• Looking for some refreshers on mathematical concepts?
- The Spinelli Center has several coming up:

§ “Exponents & Logarithms” tonight (Sept. 20th)
§ “Trigonometry Review” on Thurs. Sept. 21st

§ …and several more!
- Sessions run from 7-9pm in Seeyle 211

• Evening office hours with Jordan: 
Tuesdays 6-7pm

Ford 355
(will confirm on Slack each week)



Outline
üMotivation
üRunning Example: Advertising
üSimple Linear Regression

üEstimating coefficients
üHow good is this estimate?
üHow good is the model?

üMultiple Linear Regression
üEstimating coefficients
ü Important questions

• 3-minute activity: Dealing with Qualitative Predictors
• Extending the Linear Model
- Removing the additive assumption
- Non-linear relationships

• Potential Problems



3-minute activity: the Carseats data set



3-minute activity: the Carseats data set

• Description: simulated data set on sales of car seats 

• Format: 400 observations on the following 11 variables
- Sales: unit sales at each location
- CompPrice: price charged by nearest competitor at each location
- Income: community income level
- Advertising: local advertising budget for company at each location
- Population: population size in region (in thousands)
- Price: price charged for car seat at each site
- ShelveLoc: quality of shelving location at site (Good | Bad | Medium)
- Age: average age of the local population
- Education: education level at each location
- Urban: whether the store is in an urban or rural location
- USA: whether the store is in the US or not



3-minute activity: the Carseats data set

1. Find a friend (or two)
2. Hypothesize 3 possible relationships between variables 

in this dataset (e.g. higher Price predicts lower Sales)

Question: could you test that hypothesis 
with the techniques you know right now?



Two-level qualitative predictors
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({P1:“enrolled”}, {P2:“enrolled”}, {P3:“auditing”},…)

({P1:1}, {P2:1}, {P3:0},…)



Two-level qualitative predictors
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A note on dummy variables

• The decision to code enrolled students as 1 and auditing 
students as 0 is arbitrary

• It has no effect on model fit, or on the predicted values

• It does alter interpretation of the coefficients
- If we swapped them, what would happen?
- If we used (-1,1), what would happen?



Multi-level predictors

• Need dummy variables for all but one level

• For example:
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Extending the linear model

Thanks, Roger Hargreaves!

The linear regression model provides nice, interpretable 
results and is a good starting point for many applications



Assumption 1: independent effects

• Think back to our model of the Advertising dataset



Reality: interaction effects
Sales

Radio

TV

Spend a lot on 
either TV or Radio = 
model overestimates

Balanced spending
Between TV and Radio = 
model underestimates



Reality: interaction effects

• Suppose that spending money on radio advertising 
actually increases the effectiveness of TV advertising

• This means that the slope term for TV should increase as 
radio increases

• In the standard linear model, we didn’t account for that:

𝑌 = 𝛽% + 𝛽'×radio	+	𝛽B×TV +	𝜖



Solution: interaction terms

• One solution: add a new term
𝑌 = 𝛽% + 𝛽'×radio	+	𝛽B×TV 	+	𝛽K×(TV×radio)+ 	𝜖

• Question: how does this fix the problem?
= 𝛽% + (𝛽'+𝛽K×TV)×radio	+	𝛽B×TV +	𝜖

= 𝛽% + 𝛽N'×radio	+	𝛽B×TV +	𝜖

slope for 
radio

now depends 
on the 

value of TV



Solution: Interaction terms

• p-value for TV×radio is very low (indicating what?)

• R2 without interaction term is 89.7%; this model: 96.8% 

96.8 − 89.7
(100 − 89.7) = 69%

of the variability that our previous model missed 
is explained by the interaction term

diff. var. explained 
by each model

var. missed
by first model



Important caveat

• In this case, p-values for all 3 predictors are significant
• May not always be true!

• Hierarchical principle: if we include an interaction term, 
we should include the main effects too (why?)



Assumption 2: linear relationships

• LR assumes that there is a straight-line relationship 
between the predictors and the response

• If the true relationship is far from linear:
- the conclusions we draw from a linear model are probably flawed
- the prediction accuracy of the model is likely going to be pretty low



Assumption 2: linear relationships

• For example, in the Auto dataset:



Solution: polynomial regression

• Simple approach: use polynomial transformations
mpg	= 𝛽% + 𝛽'×	horsepower+ 𝛽B×	horsepowerB + 𝜖

• Note: still a linear model!

(Want more? We’ve got some shinier non-linear models coming up in Ch. 7)



Okay, so wait…



How to tell if you need more power

• Residuals plots can help identify problem areas in the 
model (by highlighting patterns in the errors)

• Ex. LR of mpg on horsepower in the Auto dataset:



Discussion: breaking LR

• What other problems might we run into when using LR?
• How could we fix them?



1. Correlated error terms

• LR assumes that the error terms are uncorrelated
• If these terms are correlated, the estimated standard error 

will tend to underestimate the true standard error
• What does this mean for the associated confidence 

intervals and p-values?

Question: when might we want to be wary of this?  
(hint: tick, tock…)



How to tell if error terms are correlated

• In the time-sampled case, we can plot the residuals from 
our model as a function of time

• Uncorrelated errors = no discernable pattern

“tracking”



2. Non-constant variance of error terms

• LR assumes that error terms have constant variance:
𝑉𝑎𝑟 𝑒" = 𝜎B

• Often not the case (e.g. error terms might increase with 
the value of the response)

• Non-constant variance in errors = heteroscedasticity



How to identify / fix heteroscedasticity

• The residuals plot will show a funnel shape

• Options:
- transform the response using a concave function (like log or sqrt)
-weight the observations proportional to the inverse variance



3. Outliers

• Outlier: an observation whose true response is really far 
from the one predicted by the model 

• Sometimes indicate a problem with the model (i.e. a 
missing predictor), or might just be a data collection error

• Can mess with RSE and R2, which can lead us to 
misinterpret the model’s fit



How to identify outliers

• Residual plots can help identify outliers, but sometimes 
it’s hard to pick a cutoff point (how far is “too far”?)

• Quick fix: divide each residual by dividing by its 
estimated standard error (studentized residuals), and flag 
anything larger than 3 in absolute value



“Studentizing”?

• Named for English 
statistician Wm. Gosset

• Graduated from Oxford 
with degrees in chemistry 
and math in 1988 

• Published under the 
pseudonym “Student”



4. High leverage points

• Outliers = unusual values in the response
• High leverage points = unusual values in the predictor(s)
• The more predictors you have, the harder they can be to 

spot (why?)

• These points can have a major impact on the least 
squares line (why?), which could invalidate the entire fit



How to identify high leverage points

• Compute the leverage statistic. For SLR:

ℎ" =
1
𝑛 +

𝑥" − �̅� B

∑ 𝑥" − �̅� B[
"\'



5. Collinearity

• Problems can also arise when two or more predictor 
variables are closely related to one another

• Hard to isolate the individual effects of each predictor, 
which increases uncertainty

• This makes it harder to detect whether or not an effect is 
actually present (why?)



Detecting collinearity

• Look at the correlation matrix of the predictors
• Auto dataset: just about everything is highly correlated

• Caveat: this won’t help you find interactions between 
multiple variables when no single pair is highly correlated 
(called multicollinearity)

mpg cylinders displacement horsepower weight acceleration year origin

mpg 1 -0.7776175 -0.8051269 -0.7784268 -0.8322442 0.4233285 0.5805410 0.5652088
cylinders 1 0.9508233 0.8429834 0.8975273 -0.5046834 -0.3456474 -0.5689316

displacement 1 0.8972570 0.9329944 -0.5438005 -0.3698552 -0.6145351
horsepower 1 0.8645377 -0.6891955 -0.4163615 -0.4551715

weight 1 -0.4168392 -0.3091199 -0.5850054
acceleration 1 0.2903161 0.2127458

year 1 0.1815277
origin 1

3



Approaches for dealing with collinearity

1. Drop one of the problematic variables from the 
regression (linearity implies they’re redundant)

2. Combine the collinear variables together into a single 
predictor



Lab: Linear Regression

• To do today’s lab in R: car, MASS and ISLR packages 

• To do today’s lab in python: numpy, pandas and 
statsmodels libraries 

• Instructions and code can be found at:
R version: [course website]/labs/lab2-r.html

Python version: [course website]/labs/lab2-py.html

• Original version can be found beginning on p. 109 of ISLR



Assignment 1

• To get credit for today’s lab, please post a response to the 
prompt posted to #lab2

• Assignment 1 posted on course website and Moodle
• Problems from ISLR 3.7 (p. 120-123)
- Conceptual: 3.1, 3.4, and 3.6
- Applied: 3.8, 3.10

• Due Wednesday September 27 by 11:59pm


