Lab 9 - Linear Model Selection in Python

March 7, 2016

This lab on Model Validation using Validation and Cross-Validation is a Python adaptation of p. 248-
251 of “Introduction to Statistical Learning with Applications in R” by Gareth James, Daniela Witten,
Trevor Hastie and Robert Tibshirani. Adapted by R. Jordan Crouser at Smith College for SDS293: Machine
Learning (Spring 2016).

In [ ]: Ymatplotlib inline
import pandas as pd
import numpy as np
import itertools
import statsmodels.api as sm
import matplotlib.pyplot as plt

1 Model selection using the Validation Set Approach

In Lab 8, we saw that it is possible to choose among a set of models of different sizes using C,, BIC, and
adjusted R%. We will now consider how to do this using the validation set and cross-validation approaches.

As in Lab 8, we’ll be working with the Hitters dataset from ISLR. Since we're trying to predict Salary
and we know from last time that some are missing, let’s first drop all the rows with missing values and do a
little cleanup:

In [ ]: df = pd.read_csv(’Hitters.csv’)

# Drop any rows the contain missing values, along with the player names
df = df.dropna() .drop(’Player’, axis=1)

# Get dummy wvartables
dummies = pd.get_dummies(df [[’League’, ’Division’, ’NewLeague’]])

# Extract independent variable
y = pd.DataFrame(df.Salary)

# Drop the column with the independent wariable (Salary), and columns for which we created dumm
X_ = df .drop([’Salary’, ’League’, ’Division’, ’NewLeague’], axis=1).astype(’float64’)

# Define the feature set X.
X = pd.concat([X_, dummies[[’League_N’, ’Division_W’, ’NewLeague_N’]]], axis=1)

In order for the validation set approach to yield accurate estimates of the test error, we must use only
the training observations to perform all aspects of model-fitting — including variable selection. Therefore,
the determination of which model of a given size is best must be made using only the training observations.
This point is subtle but important. If the full data set is used to perform the best subset selection step,
the validation set errors and cross-validation errors that we obtain will not be accurate estimates of the test
error.




In order to use the validation set approach, we begin by splitting the observations into a training set and
a test set. We do this by creating a random vector, train, of elements equal to TRUE if the corresponding
observation is in the training set, and FALSE otherwise. The vector test has a TRUE if the observation is
in the test set, and a FALSE otherwise. Note the np.invert() in the command to create test causes TRUEs
to be switched to FALSEs and vice versa. We also set a random seed so that the user will obtain the same
training set/test set split.

In [ ]: np.random.seed(seed=12)
train = np.random.choice([True, False], size = len(y), replace = True)
test = np.invert(train)

We’ll define our helper function to outputs the best set of variables for each model size like we did in Lab
8. Not that we’ll need to modify this to take in both test and training sets, because we want the returned
error to be the test error:

In [ ]: def processSubset(feature_set, X_train, y_train, X_test, y_test):
# Fit model on feature_set and calculate RSS
model = sm.0LS(y_train,X_train[list(feature_set)])
regr = model.fit()
RSS = ((regr.predict(X_test[list(feature_set)]) - y_test) ** 2).sum()
return {"model":regr, "RSS":RSS}

And another function to perform forward selection:
In [ ]: def forward(predictors, X_train, y_train, X_test, y_test):

# Pull out predictors we still need to process
remaining predictors = [p for p in X_train.columns if p not in predictors]

results = []

for p in remaining_predictors:
results.append(processSubset (predictors+[p], X_train, y_train, X_test, y_test))

# Wrap everything up in a nice dataframe
models = pd.DataFrame(results)

# Choose the model with the highest RSS
best_model = models.loc[models[’RSS’].argmin()]

# Return the best model, along with some other useful information about the model
return best_model

Now, we'll call our forward() to the training set in order to perform forward selection for all nodel sizes:

In [ ]: models_train = pd.DataFrame(columns=["RSS", "model"])
predictors = []
for i in range(l,len(X.columns)+1):
models_train.loc[i] = forward(predictors, X[train], y[train] ["Salary"], X[test], yl[test]["S

predictors = models_train.loc[i] ["model"] .model.exog_names

Now let’s plot the errors, and find the model that minimizes it:



In [ ]: plt.plot(models_train["RSS"])
plt.xlabel(’# Predictors’)
plt.ylabel (’RSS’)
plt.plot(models_train["RSS"].argmin(), models_train["RSS"].min(), "or")

Violal We find that the best model (according to the validation set approach) is the one that contains
10 predictors.

Now that we know what we’re looking for, let’s perform forward selection on the full dataset and select
the best 10-predictor model. It is important that we make use of the full data set in order to obtain more
accurate coefficient estimates. Note that we perform best subset selection on the full data set and select
the best 10-predictor model, rather than simply using the predictors that we obtained from the training set,
because the best 10-predictor model on the full data set may differ from the corresponding model on the
training set.

In [ ]: models_full = pd.DataFrame(columns=["RSS", "model"])
predictors = []

for i in range(1,20):
models_full.loc[i] = forward(predictors, X, y["Salary"], X, y["Salary"])
predictors = models_full.loc[i] ["model"] .model.exog_names

In fact, we see that the best ten-variable model on the full data set has a different set of predictors
than the best ten-variable model on the training set:

In [ ]: print(models_train.loc[10, "model"].model.exog_names)
print (models_full.loc[10, "model"].model.exog_names)

2 Model selection using Cross-Validation

Now let’s try to choose among the models of different sizes using cross-validation. This approach is somewhat
involved, as we must perform forward selection within each of the k training sets. Despite this, we see that
with its clever subsetting syntax, python makes this job quite easy. First, we create a vector that assigns
each observation to one of k = 10 folds, and we create a DataFrame in which we will store the results:

In [ ]: k=10 # number of folds
np.random. seed(seed=1)
folds = np.random.choice(k, size = len(y), replace = True)

# Create a DataFrame to store the results of our upcoming calculations
cv_errors = pd.DataFrame(columns=range(1,k+1), index=range(1,20))
cv_errors = cv_errors.fillna(0)

cv_errors

Now let’s write a for loop that performs cross-validation. In the j** fold, the elements of folds that equal
j are in the test set, and the remainder are in the training set. We make our predictions for each model
size, compute the test errors on the appropriate subset, and store them in the appropriate slot in the matrix
CV.errors.

In [ ]: models_cv = pd.DataFrame(columns=["RSS", "model"])

# Outer loop iterates over all folds
for j in range(1l,k+1):

# Reset predictors



predictors = []

# Inner loop iterates over each size 7
for i in range(1l,len(X.columns)+1):

# The perform forward selection on the full dataset minus the jth fold, test on jth fol
models_cv.loc[i] = forward(predictors, X[folds != (j-1)]1, yl[folds != (j-1)]["Salary"],

# Save the cross-validated error for this fold
cv_errors[j] [i] = models_cv.loc[i] ["RSS"]

# Extract the predictors
predictors = models_cv.loc[i] ["model"] .model.exog_names

In [ ]: cv_errors

This has filled up the cv_errors DataFrame such that the (i, ) element corresponds to the test MSE
for the i*" cross-validation fold for the best j-variable model. We can then use the apply() function to
take the mean over the columns of this matrix. This will give us a vector for which the j* element is the
cross-validation error for the j-variable model.

In [ ]: cv_mean = cv_errors.apply(np.mean, axis=1)

plt.plot(cv_mean)

plt.xlabel(’# Predictors’)

plt.ylabel(°CV Error’)
plt.plot(cv_mean.argmin(), cv_mean.min(), "or")

We see that cross-validation selects a 9-predictor model. Now let’s go back to our results on the full data
set in order to obtain the 9-predictor model.

In [ ]: print(models_full.loc[9, "model"].summary())
For comparison, let’s also take a look at the statistics from last lab:

In [ ]: plt.figure(figsize=(20,10))
plt.rcParams.update({’font.size’: 18, ’lines.markersize’: 10})

# Set up a 2z2 grid so we can look at 4 plots at once
plt.subplot(2, 2, 1)

# We will now plot a red dot to indicate the model with the largest adjusted R™2 statistic.

# The argmaz() function can be used to tdentify the location of the mazimum point of a wvector
plt.plot (models_full["RSS"])

plt.xlabel(’# Predictors’)

plt.ylabel (’RSS’)

# We will now plot a red dot to indicate the model with the largest adjusted R™2 statistic.
# The argmaz() function can be used to tdentify the location of the mazimum point of a vector

rsquared_adj = models_full.apply(lambda row: row([l].rsquared_adj, axis=1)
plt.subplot(2, 2, 2)

plt.plot(rsquared_adj)
plt.plot(rsquared_adj.argmax(), rsquared_adj.max(), "or")



plt.xlabel(’# Predictors’)
plt.ylabel(’adjusted rsquared’)

# We’ll do the same for AIC and BIC, this time looking for the models with the SMALLEST statist
aic = models_full.apply(lambda row: row[1].aic, axis=1)

plt.subplot(2, 2, 3)
plt.plot(aic)
plt.plot(aic.argmin(), aic.min(),
plt.xlabel(’# Predictors’)
plt.ylabel (’AIC’)

Ilorll)

bic = models_full.apply(lambda row: row[1].bic, axis=1)

plt.subplot(2, 2, 4)

plt.plot(bic)

plt.plot(bic.argmin(), bic.min(), "or")
plt.xlabel (’# Predictors’)

plt.ylabel (’BIC’)

Notice how some of the indicators are similar the cross-validated model, and others are very different?

3 Your turn!

Now it’s time to test out these approaches (best / forward / backward selection) and evaluation methods
(adjusted training error, validation set, cross validation) on other datasets. You may want to work with a
team on this portion of the lab.

You may use any of the datasets included in ISLR, or choose one from the UCI machine learning repository
(http://archive.ics.uci.edu/ml/datasets.html). Download a dataset, and try to determine the optimal set of
parameters to use to model it!

In [ J: # Your code here

To get credit for this lab, please post your answers to the following questions: - What dataset did you
choose? - Which selection techniques did you try? - Which evaluation techniques did you try? - What did
you determine was the best set of parameters to model this data? - How well did this model perform?

to Piazza: https://piazza.com/class/igwivdw3ctbbrg?cid=35
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