
Lab 8 - Subset Selection in Python

March 2, 2016

This lab on Subset Selection is a Python adaptation of p. 244-247 of “Introduction to Statistical Learning
with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. Adapted
by R. Jordan Crouser at Smith College for SDS293: Machine Learning (Spring 2016).

In [ ]: %matplotlib inline

import pandas as pd

import numpy as np

import itertools

import time

import statsmodels.api as sm

import matplotlib.pyplot as plt

1 6.5.1 Best Subset Selection

Here we apply the best subset selection approach to the Hitters data. We wish to predict a baseball player’s
Salary on the basis of various statistics associated with performance in the previous year. Let’s take a quick
look:

In [ ]: df = pd.read_csv(’Hitters.csv’)

df.head()

First of all, we note that the Salary variable is missing for some of the players. The isnull() function
can be used to identify the missing observations. It returns a vector of the same length as the input vector,
with a TRUE value for any elements that are missing, and a FALSE value for non-missing elements. The sum()
function can then be used to count all of the missing elements:

In [ ]: print(df["Salary"].isnull().sum())

We see that Salary is missing for 59 players. The dropna() function removes all of the rows that have
missing values in any variable:

In [ ]: # Print the dimensions of the original Hitters data (322 rows x 20 columns)

print(df.shape)

# Drop any rows the contain missing values, along with the player names

df = df.dropna().drop(’Player’, axis=1)

# Print the dimensions of the modified Hitters data (263 rows x 20 columns)

print(df.shape)

# One last check: should return 0

print(df["Salary"].isnull().sum())

1



In [ ]: dummies = pd.get_dummies(df[[’League’, ’Division’, ’NewLeague’]])

y = df.Salary

# Drop the column with the independent variable (Salary), and columns for which we created dummy variables

X_ = df.drop([’Salary’, ’League’, ’Division’, ’NewLeague’], axis=1).astype(’float64’)

# Define the feature set X.

X = pd.concat([X_, dummies[[’League_N’, ’Division_W’, ’NewLeague_N’]]], axis=1)

We can perform best subset selection by identifying the best model that contains a given number of
predictors, where best is quantified using RSS. We’ll define a helper function to outputs the best set of
variables for each model size:

In [ ]: def processSubset(feature_set):

# Fit model on feature_set and calculate RSS

model = sm.OLS(y,X[list(feature_set)])

regr = model.fit()

RSS = ((regr.predict(X[list(feature_set)]) - y) ** 2).sum()

return {"model":regr, "RSS":RSS}

In [ ]: def getBest(k):

tic = time.time()

results = []

for combo in itertools.combinations(X.columns, k):

results.append(processSubset(combo))

# Wrap everything up in a nice dataframe

models = pd.DataFrame(results)

# Choose the model with the highest RSS

best_model = models.loc[models[’RSS’].argmin()]

toc = time.time()

print("Processed ", models.shape[0], "models on", k, "predictors in", (toc-tic), "seconds.")

# Return the best model, along with some other useful information about the model

return best_model

This returns a DataFrame containing the best model that we generated, along with some extra information
about the model. Now we want to call that function for each number of predictors k:

In [ ]: # Could take quite awhile to complete...

models = pd.DataFrame(columns=["RSS", "model"])

tic = time.time()

for i in range(1,8):

models.loc[i] = getBest(i)

toc = time.time()

print("Total elapsed time:", (toc-tic), "seconds.")

2



Now we have one big DataFrame that contains the best models we’ve generated. Let’s take a look at the
first few:

In [ ]: models

If we want to access the details of each model, no problem! We can get a full rundown of a single model
using the summary() function:

In [ ]: print(models.loc[2, "model"].summary())

This output indicates that the best two-variable model contains only Hits and CRBI. To save time, we
only generated results up to the best 11-variable model. You can use the functions we defined above to
explore as many variables as are desired.

In [ ]: print(getBest(19)["model"].summary())

Rather than letting the results of our call to the summary() function print to the screen, we can access
just the parts we need using the model’s attributes. For example, if we want the R2 value:

In [ ]: models.loc[2, "model"].rsquared

Excellent! In addition to the verbose output we get when we print the summary to the screen, fitting the
OLM also produced many other useful statistics such as adjusted R2, AIC, and BIC. We can examine these
to try to select the best overall model. Let’s start by looking at R2 across all our models:

In [ ]: # Gets the second element from each row (’model’) and pulls out its rsquared attribute

models.apply(lambda row: row[1].rsquared, axis=1)

As expected, the R2 statistic increases monotonically as more variables are included.
Plotting RSS, adjusted R2, AIC, and BIC for all of the models at once will help us decide which model

to select. Note the type = ”l” option tells R to connect the plotted points with lines:

In [ ]: plt.figure(figsize=(20,10))

plt.rcParams.update({’font.size’: 18, ’lines.markersize’: 10})

# Set up a 2x2 grid so we can look at 4 plots at once

plt.subplot(2, 2, 1)

# We will now plot a red dot to indicate the model with the largest adjusted R^2 statistic.

# The argmax() function can be used to identify the location of the maximum point of a vector

plt.plot(models["RSS"])

plt.xlabel(’# Predictors’)

plt.ylabel(’RSS’)

# We will now plot a red dot to indicate the model with the largest adjusted R^2 statistic.

# The argmax() function can be used to identify the location of the maximum point of a vector

rsquared = models.apply(lambda row: row[1].rsquared, axis=1)

plt.subplot(2, 2, 2)

plt.plot(rsquared)

plt.plot(rsquared.argmax(), rsquared.max(), "or")

plt.xlabel(’# Predictors’)

plt.ylabel(’adjusted rsquared’)

# We’ll do the same for AIC and BIC, this time looking for the models with the SMALLEST statistic

3



aic = models.apply(lambda row: row[1].aic, axis=1)

plt.subplot(2, 2, 3)

plt.plot(aic)

plt.plot(aic.argmin(), aic.min(), "or")

plt.xlabel(’# Predictors’)

plt.ylabel(’AIC’)

bic = models.apply(lambda row: row[1].bic, axis=1)

plt.subplot(2, 2, 4)

plt.plot(bic)

plt.plot(bic.argmin(), bic.min(), "or")

plt.xlabel(’# Predictors’)

plt.ylabel(’BIC’)

Recall that in the second step of our selection process, we narrowed the field down to just one model on
any k <= p predictors. We see that according to BIC, the best performer is the model with 6 variables.
According to AIC and adjusted R2 something a bit more complex might be better. Again, no one measure
is going to give us an entirely accurate picture. . . but they all agree that a model with 5 or fewer predictors
is insufficient.

2 6.5.2 Forward and Backward Stepwise Selection

We can also use a similar approach to perform forward stepwise or backward stepwise selection, using a
slight modification of the functions we defined above:

In [ ]: def forward(predictors):

# Pull out predictors we still need to process

remaining_predictors = [p for p in X.columns if p not in predictors]

tic = time.time()

results = []

for p in remaining_predictors:

results.append(processSubset(predictors+[p]))

# Wrap everything up in a nice dataframe

models = pd.DataFrame(results)

# Choose the model with the highest RSS

best_model = models.loc[models[’RSS’].argmin()]

toc = time.time()

print("Processed ", models.shape[0], "models on", len(predictors)+1, "predictors in", (toc-tic), "seconds.")

# Return the best model, along with some other useful information about the model

return best_model

Now let’s see how much faster it runs!

In [ ]: models2 = pd.DataFrame(columns=["RSS", "model"])

4



tic = time.time()

predictors = []

for i in range(1,len(X.columns)+1):

models2.loc[i] = forward(predictors)

predictors = models2.loc[i]["model"].model.exog_names

toc = time.time()

print("Total elapsed time:", (toc-tic), "seconds.")

Phew! That’s a lot better. Let’s take a look:

In [ ]: print(models.loc[1, "model"].summary())

print(models.loc[2, "model"].summary())

We see that using forward stepwise selection, the best one-variable model contains only Hits, and the
best two-variable model additionally includes CRBI. Let’s see how the models stack up against best subset
selection:

In [ ]: print(models.loc[6, "model"].summary())

print(models2.loc[6, "model"].summary())

For this data, the best one-variable through six-variable models are each identical for best subset and
forward selection.

3 Backward Selection

Not much has to change to implement backward selection. . . just looping through the predictors in reverse!

In [ ]: def backward(predictors):

tic = time.time()

results = []

for combo in itertools.combinations(predictors, len(predictors)-1):

results.append(processSubset(combo))

# Wrap everything up in a nice dataframe

models = pd.DataFrame(results)

# Choose the model with the highest RSS

best_model = models.loc[models[’RSS’].argmin()]

toc = time.time()

print("Processed ", models.shape[0], "models on", len(predictors)-1, "predictors in", (toc-tic), "seconds.")

# Return the best model, along with some other useful information about the model

return best_model

In [ ]: models3 = pd.DataFrame(columns=["RSS", "model"], index = range(1,len(X.columns)))

tic = time.time()

predictors = X.columns

5



while(len(predictors) > 1):

models3.loc[len(predictors)-1] = backward(predictors)

predictors = models3.loc[len(predictors)-1]["model"].model.exog_names

toc = time.time()

print("Total elapsed time:", (toc-tic), "seconds.")

For this data, the best one-variable through six-variable models are each identical for best subset and
forward selection. However, the best seven-variable models identified by forward stepwise selection, backward
stepwise selection, and best subset selection are different:

In [ ]: print(models.loc[7, "model"].params)

In [ ]: print(models2.loc[7, "model"].params)

In [ ]: print(models3.loc[7, "model"].params)

In [ ]:

6


	6.5.1 Best Subset Selection
	6.5.2 Forward and Backward Stepwise Selection
	Backward Selection

