
Lab 5 - LDA and QDA in Python

February 24, 2016

This lab on Logistic Regression is a Python adaptation of p. 161-163 of “Introduction to Statistical
Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani.
Adapted by R. Jordan Crouser at Smith College for SDS293: Machine Learning (Spring 2016).

In []: import pandas as pd

import numpy as np

from sklearn.lda import LDA

from sklearn.qda import QDA

from sklearn.metrics import confusion_matrix, classification_report, precision_score

%matplotlib inline

1 4.6.3 Linear Discriminant Analysis

Let’s return to the Smarket data from ISLR.

In []: df = pd.read_csv(’Smarket.csv’, usecols=range(1,10), index_col=0, parse_dates=True)

df.head()

Now we will perform LDA on the Smarket data from the ISLR package. In Python, we can fit a LDA
model using the LDA() function, which is part of the lda module of the sklearn library. As we did with
logistic regression and KNN, we’ll fit the model using only the observations before 2005, and then test the
model on the data from 2005.

In []: X_train = df[:’2004’][[’Lag1’,’Lag2’]]

y_train = df[:’2004’][’Direction’]

X_test = df[’2005’:][[’Lag1’,’Lag2’]]

y_test = df[’2005’:][’Direction’]

lda = LDA()

model = lda.fit(X_train, y_train)

print(model.priors_)

The LDA output indicates prior probabilities of π̂1 = 0.492 and π̂2 = 0.508; in other words, 49.2% of the
training observations correspond to days during which the market went down.

In []: print(model.means_)

The above provides the group means; these are the average of each predictor within each class, and are
used by LDA as estimates of µk. These suggest that there is a tendency for the previous 2 days’ returns to
be negative on days when the market increases, and a tendency for the previous days’ returns to be positive
on days when the market declines.

1

In []: print(model.coef_)

The coefficients of linear discriminants output provides the linear combination of Lag1 and Lag2 that are
used to form the LDA decision rule.

If −0.0554 × Lag1− 0.0443 × Lag2 is large, then the LDA classifier will predict a market increase, and if
it is small, then the LDA classifier will predict a market decline. Note: these coefficients differ from those
produced by R.

The predict() function returns a list of LDA’s predictions about the movement of the market on the
test data:

In []: pred=model.predict(X_test)

print(np.unique(pred, return_counts=True))

The model assigned 70 observations to the “Down” class, and 182 observations to the “Up” class. Let’s
check out the confusion matrix to see how this model is doing. We’ll want to compare the predicted class
(which we can find in pred) to the true class (found in y test).

In []: print(confusion_matrix(pred, y_test))

print(classification_report(y_test, pred, digits=3))

We can also get the predicted probabilities using the predict proba() function:

In []: pred_p = model.predict_proba(X_test)

Applying a 50% threshold to the posterior probabilities allows us to recreate the predictions:

In []: print(np.unique(pred_p[:,1]>0.5, return_counts=True))

Notice that the posterior probability output by the model corresponds to the probability that the market
will increase:

In []: print np.stack((pred_p[10:20,1], pred[10:20])).T

If we wanted to use a posterior probability threshold other than 50% in order to make predictions, then
we could easily do so. For instance, suppose that we wish to predict a market decrease only if we are very
certain that the market will indeed decrease on that day—say, if the posterior probability is at least 90%:

In []: print(np.unique(pred_p[:,1]>0.9, return_counts=True))

No days in 2005 meet that threshold! In fact, the greatest posterior probability of decrease in all of 2005
was 54.2%:

In []: max(pred_p[:,1])

2 4.6.4 Quadratic Discriminant Analysis

We will now fit a QDA model to the Smarket data. QDA is implemented in sklearn using the QDA()
function, which is part of the qda module. The syntax is identical to that of LDA().

In []: qda = QDA()

model2 = qda.fit(X_train, y_train)

print model2.priors_

print model2.means_

The output contains the group means. But it does not contain the coefficients of the linear discriminants,
because the QDA classifier involves a quadratic, rather than a linear, function of the predictors. The
predict() function works in exactly the same fashion as for LDA.

2

In []: pred2=model2.predict(X_test)

print(np.unique(pred2, return_counts=True))

print(confusion_matrix(pred2, y_test))

print(classification_report(y_test, pred2, digits=3))

Interestingly, the QDA predictions are accurate almost 60% of the time, even though the 2005 data was
not used to fit the model. This level of accuracy is quite impressive for stock market data, which is known
to be quite hard to model accurately.

This suggests that the quadratic form assumed by QDA may capture the true relationship more accurately
than the linear forms assumed by LDA and logistic regression. However, we recommend evaluating this
method’s performance on a larger test set before betting that this approach will consistently beat the
market!

3 An Application to Carseats Data

Let’s see how the LDA/QDA approach performs on the Carseats data set, which is included with ISLR.
Recall: this is a simulated data set containing sales of child car seats at 400 different stores.

In []: df2 = pd.read_csv(’Carseats.csv’)

df2.head()

See if you can build a model that predicts ShelveLoc, the shelf location (Bad, Good, or Medium) of the
product at each store. Don’t forget to hold out some of the data for testing!

In []: # Your code here

To get credit for this lab, please post your answers to the following questions:

• What was your approach to building the model?
• How did your model perform?
• Was anything easier or more challenging than you anticipated?

to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=23

3

	4.6.3 Linear Discriminant Analysis
	4.6.4 Quadratic Discriminant Analysis
	An Application to Carseats Data

