
Lab 18 - PCA in Python

April 25, 2016

This lab on Principal Components Analysis is a python adaptation of p. 401-404, 408-410 of “Introduction
to Statistical Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibshirani. Original adaptation by J. Warmenhoven, updated by R. Jordan Crouser at Smith College for
SDS293: Machine Learning (Spring 2016).

In []: import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

%matplotlib inline

1 10.4: Principal Components Analysis

In this lab, we perform PCA on the USArrests data set. The rows of the data set contain the 50 states, in
alphabetical order:

In []: df = pd.read_csv(’USArrests.csv’, index_col=0)

df.head()

The columns of the data set contain four variables relating to various crimes:

In []: df.info()

Let’s start by taking a quick look at the column means of the data:

In []: df.mean()

We see right away the the data have vastly different means. We can also examine the variances of the
four variables:

In []: df.var()

Not surprisingly, the variables also have vastly different variances: the UrbanPop variable measures the
percentage of the population in each state living in an urban area, which is not a comparable number to the
number of crimes committeed in each state per 100,000 individuals. If we failed to scale the variables before
performing PCA, then most of the principal components that we observed would be driven by the Assault

variable, since it has by far the largest mean and variance.
Thus, it is important to standardize the variables to have mean zero and standard deviation 1 before

performing PCA. We can do this using the scale() function from sklearn:

In []: from sklearn.preprocessing import scale

X = pd.DataFrame(scale(df), index=df.index, columns=df.columns)

Now we’ll use the PCA() function from sklearn to compute the loading vectors:

1

In []: from sklearn.decomposition import PCA

pca_loadings = pd.DataFrame(PCA().fit(X).components_.T, index=df.columns, columns=[’V1’, ’V2’, ’V3’, ’V4’])

pca_loadings

We see that there are four distinct principal components. This is to be expected because there are in
general min(n− 1, p) informative principal components in a data set with n observations and p variables.

Using the fittransform() function, we can get the principal component scores of the original data. We’ll
take a look at the first few states:

In []: # Fit the PCA model and transform X to get the principal components

pca = PCA()

df_plot = pd.DataFrame(pca.fit_transform(X), columns=[’PC1’, ’PC2’, ’PC3’, ’PC4’], index=X.index)

df_plot.head()

We can construct a biplot of the first two principal components using our loading vectors:

In []: fig , ax1 = plt.subplots(figsize=(9,7))

ax1.set_xlim(-3.5,3.5)

ax1.set_ylim(-3.5,3.5)

Plot Principal Components 1 and 2

for i in df_plot.index:

ax1.annotate(i, (-df_plot.PC1.loc[i], -df_plot.PC2.loc[i]), ha=’center’)

Plot reference lines

ax1.hlines(0,-3.5,3.5, linestyles=’dotted’, colors=’grey’)

ax1.vlines(0,-3.5,3.5, linestyles=’dotted’, colors=’grey’)

ax1.set_xlabel(’First Principal Component’)

ax1.set_ylabel(’Second Principal Component’)

Plot Principal Component loading vectors, using a second y-axis.

ax2 = ax1.twinx().twiny()

ax2.set_ylim(-1,1)

ax2.set_xlim(-1,1)

ax2.set_xlabel(’Principal Component loading vectors’, color=’red’)

Plot labels for vectors. Variable ’a’ is a small offset parameter to separate arrow tip and text.

a = 1.07

for i in pca_loadings[[’V1’, ’V2’]].index:

ax2.annotate(i, (-pca_loadings.V1.loc[i]*a, -pca_loadings.V2.loc[i]*a), color=’red’)

Plot vectors

ax2.arrow(0,0,-pca_loadings.V1[0], -pca_loadings.V2[0])

ax2.arrow(0,0,-pca_loadings.V1[1], -pca_loadings.V2[1])

ax2.arrow(0,0,-pca_loadings.V1[2], -pca_loadings.V2[2])

ax2.arrow(0,0,-pca_loadings.V1[3], -pca_loadings.V2[3])

The PCA() function also outputs the variance explained by of each principal component. We can access
these values as follows:

In []: pca.explained_variance_

2

We can also get the proportion of variance explained:

In []: pca.explained_variance_ratio_

We see that the first principal component explains 62.0% of the variance in the data, the next principal
component explains 24.7% of the variance, and so forth. We can plot the PVE explained by each component
as follows:

In []: plt.figure(figsize=(7,5))

plt.plot([1,2,3,4], pca.explained_variance_ratio_, ’-o’)

plt.ylabel(’Proportion of Variance Explained’)

plt.xlabel(’Principal Component’)

plt.xlim(0.75,4.25)

plt.ylim(0,1.05)

plt.xticks([1,2,3,4])

We can also use the function cumsum(), which computes the cumulative sum of the elements of a numeric
vector, to plot the cumulative PVE:

In []: plt.figure(figsize=(7,5))

plt.plot([1,2,3,4], np.cumsum(pca.explained_variance_ratio_), ’-s’)

plt.ylabel(’Proportion of Variance Explained’)

plt.xlabel(’Principal Component’)

plt.xlim(0.75,4.25)

plt.ylim(0,1.05)

plt.xticks([1,2,3,4])

2 10.6: NCI60 Data Example

Let’s return to the NCI60 cancer cell line microarray data, which consists of 6,830 gene expression measure-
ments on 64 cancer cell lines:

In []: df2 = pd.read_csv(’NCI60.csv’).drop(’Unnamed: 0’, axis=1)

df2.columns = np.arange(df2.columns.size)

df2.info()

In []: # Read in the labels to check our work later

y = pd.read_csv(’NCI60_y.csv’, usecols=[1], skiprows=1, names=[’type’])

3 10.6.1 PCA on the NCI60 Data

We first perform PCA on the data after scaling the variables (genes) to have standard deviation one, although
one could reasonably argue that it is better not to scale the genes:

In []: # Scale the data

X = pd.DataFrame(scale(df2))

X.shape

Fit the PCA model and transform X to get the principal components

pca2 = PCA()

df2_plot = pd.DataFrame(pca2.fit_transform(X))

We now plot the first few principal component score vectors, in order to visualize the data. The obser-
vations (cell lines) corresponding to a given cancer type will be plotted in the same color, so that we can see
to what extent the observations within a cancer type are similar to each other:

3

In []: fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,6))

color_idx = pd.factorize(y.type)[0]

cmap = mpl.cm.hsv

Left plot

ax1.scatter(df2_plot.iloc[:,0], df2_plot.iloc[:,1], c=color_idx, cmap=cmap, alpha=0.5, s=50)

ax1.set_ylabel(’Principal Component 2’)

Right plot

ax2.scatter(df2_plot.iloc[:,0], df2_plot.iloc[:,2], c=color_idx, cmap=cmap, alpha=0.5, s=50)

ax2.set_ylabel(’Principal Component 3’)

Custom legend for the classes (y) since we do not create scatter plots per class (which could have their own labels).

handles = []

labels = pd.factorize(y.type.unique())

norm = mpl.colors.Normalize(vmin=0.0, vmax=14.0)

for i, v in zip(labels[0], labels[1]):

handles.append(mpl.patches.Patch(color=cmap(norm(i)), label=v, alpha=0.5))

ax2.legend(handles=handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

xlabel for both plots

for ax in fig.axes:

ax.set_xlabel(’Principal Component 1’)

On the whole, cell lines corresponding to a single cancer type do tend to have similar values on the first
few principal component score vectors. This indicates that cell lines from the same cancer type tend to have
pretty similar gene expression levels.

We can generate a summary of the proportion of variance explained (PVE) of the first few principal
components:

In []: pd.DataFrame([df2_plot.iloc[:,:5].std(axis=0, ddof=0).as_matrix(),

pca2.explained_variance_ratio_[:5],

np.cumsum(pca2.explained_variance_ratio_[:5])],

index=[’Standard Deviation’, ’Proportion of Variance’, ’Cumulative Proportion’],

columns=[’PC1’, ’PC2’, ’PC3’, ’PC4’, ’PC5’])

Using the plot() function, we can also plot the variance explained by the first few principal components:

In []: df2_plot.iloc[:,:10].var(axis=0, ddof=0).plot(kind=’bar’, rot=0)

plt.ylabel(’Variances’)

However, it is generally more informative to plot the PVE of each principal component (i.e. a scree plot)
and the cumulative PVE of each principal component. This can be done with just a little tweaking:

In []: fig , (ax1,ax2) = plt.subplots(1,2, figsize=(15,5))

Left plot

ax1.plot(pca2.explained_variance_ratio_, ’-o’)

ax1.set_ylabel(’Proportion of Variance Explained’)

ax1.set_ylim(ymin=-0.01)

Right plot

4

ax2.plot(np.cumsum(pca2.explained_variance_ratio_), ’-ro’)

ax2.set_ylabel(’Cumulative Proportion of Variance Explained’)

ax2.set_ylim(ymax=1.05)

for ax in fig.axes:

ax.set_xlabel(’Principal Component’)

ax.set_xlim(-1,65)

We see that together, the first seven principal components explain around 40% of the variance in the
data. This is not a huge amount of the variance. However, looking at the scree plot, we see that while each
of the first seven principal components explain a substantial amount of variance, there is a marked decrease
in the variance explained by further principal components. That is, there is an elbow in the plot after
approximately the seventh principal component. This suggests that there may be little benefit to examining
more than seven or so principal components (phew! even examining seven principal components may be
difficult).

5

	10.4: Principal Components Analysis
	10.6: NCI60 Data Example
	10.6.1 PCA on the NCI60 Data

