
Lab 15 - Support Vector Machines in Python

November 29, 2016

This lab on Support Vector Machines is a Python adaptation of p. 359-366 of “Introduction
to Statistical Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie
and Robert Tibshirani. Original adaptation by J. Warmenhoven, updated by R. Jordan Crouser at
Smith College for SDS293: Machine Learning (Spring 2016).

In [1]: import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix

%matplotlib inline

We'll define a function to draw a nice plot of an SVM
def plot_svc(svc, X, y, h=0.02, pad=0.25):

x_min, x_max = X[:, 0].min()-pad, X[:, 0].max()+pad
y_min, y_max = X[:, 1].min()-pad, X[:, 1].max()+pad
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.2)

plt.scatter(X[:,0], X[:,1], s=70, c=y, cmap=mpl.cm.Paired)
Support vectors indicated in plot by vertical lines
sv = svc.support_vectors_
plt.scatter(sv[:,0], sv[:,1], c='k', marker='x', s=100, linewidths='1')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
print('Number of support vectors: ', svc.support_.size)

1 9.6 Lab: Support Vector Machines

In this lab, we’ll use the SVC module from the sklearn.svm package to demonstrate the support
vector classifier and the SVM:

1

In [2]: from sklearn.svm import SVC

2 9.6.1 Support Vector Classifier

The SVC() function can be used to fit a support vector classifier when the argument
kernel = ”linear” is used. This function uses a slightly different formulation of the equations
we saw in lecture to build the support vector classifier. The c argument allows us to specify the
cost of a violation to the margin. When the c argument is small, then the margins will be wide
and many support vectors will be on the margin or will violate the margin. When the c argument
is large, then the margins will be narrow and there will be few support vectors on the margin or
violating the margin.

We can use the SVC() function to fit the support vector classifier for a given value of the cost

parameter. Here we demonstrate the use of this function on a two-dimensional example so that
we can plot the resulting decision boundary. Let’s start by generating a set of observations, which
belong to two classes:

In [3]: # Generating random data: 20 observations of 2 features and divide into two classes.
np.random.seed(5)
X = np.random.randn(20,2)
y = np.repeat([1,-1], 10)

X[y == -1] = X[y == -1] +1

Let’s plot the data to see whether the classes are linearly separable:

In [4]: plt.scatter(X[:,0], X[:,1], s=70, c=y, cmap=mpl.cm.Paired)
plt.xlabel('X1')
plt.ylabel('X2')

Out[4]: <matplotlib.text.Text at 0x117e01828>

2

Nope; not linear. Next, we fit the support vector classifier:

In [5]: svc = SVC(C=1, kernel='linear')
svc.fit(X, y)

Out[5]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

We can now plot the support vector classifier by calling the plot_svc() function on the output
of the call to SVC(), as well as the data used in the call to SVC():

In [6]: plot_svc(svc, X, y)

3

Number of support vectors: 13

The region of feature space that will be assigned to the −1 class is shown in light blue, and the
region that will be assigned to the +1 class is shown in brown. The decision boundary between
the two classes is linear (because we used the argument kernel = ”linear”).

The support vectors are plotted with crosses and the remaining observations are plotted as
circles; we see here that there are 13 support vectors. We can determine their identities as follows:

In [7]: svc.support_

Out[7]: array([10, 11, 13, 14, 15, 16, 17, 0, 1, 2, 4, 6, 8], dtype=int32)

What if we instead used a smaller value of the cost parameter?

In [8]: svc2 = SVC(C=0.1, kernel='linear')
svc2.fit(X, y)
plot_svc(svc2, X, y)

4

Number of support vectors: 16

Now that a smaller value of the c parameter is being used, we obtain a larger number of
support vectors, because the margin is now wider.

The sklearn.grid_search module includes a a function GridSearchCV() to perform cross-
validation. In order to use this function, we pass in relevant information about the set of models
that are under consideration. The following command indicates that we want perform 10-fold
cross-validation to compare SVMs with a linear kernel, using a range of values of the cost param-
eter:

In [9]: from sklearn.grid_search import GridSearchCV

Select the optimal C parameter by cross-validation
tuned_parameters = [{'C': [0.001, 0.01, 0.1, 1, 5, 10, 100]}]
clf = GridSearchCV(SVC(kernel='linear'), tuned_parameters, cv=10, scoring='accuracy')
clf.fit(X, y)

/Users/jcrouser/anaconda3/lib/python3.5/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
"This module will be removed in 0.20.", DeprecationWarning)

/Users/jcrouser/anaconda3/lib/python3.5/site-packages/sklearn/grid_search.py:43: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. This module will be removed in 0.20.
DeprecationWarning)

Out[9]: GridSearchCV(cv=10, error_score='raise',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

5

decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),

fit_params={}, iid=True, n_jobs=1,
param_grid=[{'C': [0.001, 0.01, 0.1, 1, 5, 10, 100]}],
pre_dispatch='2*n_jobs', refit=True, scoring='accuracy', verbose=0)

We can easily access the cross-validation errors for each of these models:

In [10]: clf.grid_scores_

Out[10]: [mean: 0.80000, std: 0.24495, params: {'C': 0.001},
mean: 0.80000, std: 0.24495, params: {'C': 0.01},
mean: 0.80000, std: 0.24495, params: {'C': 0.1},
mean: 0.75000, std: 0.33541, params: {'C': 1},
mean: 0.75000, std: 0.33541, params: {'C': 5},
mean: 0.75000, std: 0.33541, params: {'C': 10},
mean: 0.75000, std: 0.33541, params: {'C': 100}]

The GridSearchCV() function stores the best parameters obtained, which can be accessed as
follows:

In [11]: clf.best_params_

Out[11]: {'C': 0.001}

c=0.001 is best according to GridSearchCV.
As usual, the predict() function can be used to predict the class label on a set of test observa-

tions, at any given value of the cost parameter. Let’s generate a test data set:

In [12]: np.random.seed(1)
X_test = np.random.randn(20,2)
y_test = np.random.choice([-1,1], 20)
X_test[y_test == 1] = X_test[y_test == 1] -1

Now we predict the class labels of these test observations. Here we use the best model obtained
through cross-validation in order to make predictions:

In [13]: svc2 = SVC(C=0.001, kernel='linear')
svc2.fit(X, y)
y_pred = svc2.predict(X_test)
pd.DataFrame(confusion_matrix(y_test, y_pred), index=svc2.classes_, columns=svc2.classes_)

Out[13]: -1 1
-1 2 6
1 0 12

With this value of c, 14 of the test observations are correctly classified.
Now consider a situation in which the two classes are linearly separable. Then we can find a

separating hyperplane using the svm() function. First we’ll give our simulated data a little nudge
so that they are linearly separable:

6

In [14]: X_test[y_test == 1] = X_test[y_test == 1] -1
plt.scatter(X_test[:,0], X_test[:,1], s=70, c=y_test, cmap=mpl.cm.Paired)
plt.xlabel('X1')
plt.ylabel('X2')

Out[14]: <matplotlib.text.Text at 0x11845b358>

Now the observations are just barely linearly separable. We fit the support vector classifier
and plot the resulting hyperplane, using a very large value of cost so that no observations are
misclassified.

In [15]: svc3 = SVC(C=1e5, kernel='linear')
svc3.fit(X_test, y_test)
plot_svc(svc3, X_test, y_test)

7

Number of support vectors: 3

No training errors were made and only three support vectors were used. However, we can
see from the figure that the margin is very narrow (because the observations that are not support
vectors, indicated as circles, are very close to the decision boundary). It seems likely that this
model will perform poorly on test data. Let’s try a smaller value of cost:

In [16]: svc4 = SVC(C=1, kernel='linear')
svc4.fit(X_test, y_test)
plot_svc(svc4, X_test, y_test)

8

Number of support vectors: 5

Using cost = 1, we misclassify a training observation, but we also obtain a much wider margin
and make use of five support vectors. It seems likely that this model will perform better on test
data than the model with cost = 1e5.

3 9.6.2 Support Vector Machine

In order to fit an SVM using a non-linear kernel, we once again use the SVC() function. However,
now we use a different value of the parameter kernel. To fit an SVM with a polynomial kernel
we use kernel = ”poly”, and to fit an SVM with a radial kernel we use kernel = ”rbf”. In the
former case we also use the degree argument to specify a degree for the polynomial kernel, and
in the latter case we use gamma to specify a value of γ for the radial basis kernel.

Let’s generate some data with a non-linear class boundary:

In [20]: from sklearn.model_selection import train_test_split

np.random.seed(8)
X = np.random.randn(200,2)
X[:100] = X[:100] +2
X[101:150] = X[101:150] -2
y = np.concatenate([np.repeat(-1, 150), np.repeat(1,50)])

9

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5, random_state=2)

plt.scatter(X[:,0], X[:,1], s=70, c=y, cmap=mpl.cm.Paired)
plt.xlabel('X1')
plt.ylabel('X2')

Out[20]: <matplotlib.text.Text at 0x1190d3e10>

See how one class is kind of stuck in the middle of another class? This suggests that we might
want to use a radial kernel in our SVM. Now let’s fit the training data using the SVC() function
with a radial kernel and γ = 1:

In [21]: svm = SVC(C=1.0, kernel='rbf', gamma=1)
svm.fit(X_train, y_train)
plot_svc(svm, X_test, y_test)

10

Number of support vectors: 51

Not too shabby! The plot shows that the resulting SVM has a decidedly non-linear boundary.
We can see from the figure that there are a fair number of training errors in this SVM fit. If we
increase the value of cost, we can reduce the number of training errors:

In [22]: # Increasing C parameter, allowing more flexibility
svm2 = SVC(C=100, kernel='rbf', gamma=1.0)
svm2.fit(X_train, y_train)
plot_svc(svm2, X_test, y_test)

11

Number of support vectors: 36

However, this comes at the price of a more irregular decision boundary that seems to be at risk
of overfitting the data. We can perform cross-validation using GridSearchCV() to select the best
choice of γ and cost for an SVM with a radial kernel:

In [23]: tuned_parameters = [{'C': [0.01, 0.1, 1, 10, 100],
'gamma': [0.5, 1,2,3,4]}]

clf = GridSearchCV(SVC(kernel='rbf'), tuned_parameters, cv=10, scoring='accuracy')
clf.fit(X_train, y_train)
clf.best_params_

Out[23]: {'C': 1, 'gamma': 0.5}

Therefore, the best choice of parameters involves cost = 1 and gamma = 0.5. We can plot the
resulting fit using the plot_svc() function, and view the test set predictions for this model by
applying the predict() function to the test data:

In [24]: plot_svc(clf.best_estimator_, X_test, y_test)
print(confusion_matrix(y_test, clf.best_estimator_.predict(X_test)))
print(clf.best_estimator_.score(X_test, y_test))

12

Number of support vectors: 41
[[67 6]
[9 18]]
0.85

85% of test observations are correctly classified by this SVM. Not bad!

4 9.6.3 ROC Curves

The auc() function from the sklearn.metrics package can be used to produce ROC curves such
as those we saw in lecture:

In [25]: from sklearn.metrics import auc
from sklearn.metrics import roc_curve

Let’s start by fitting two models, one more flexible than the other:

In [26]: # More constrained model
svm3 = SVC(C=1, kernel='rbf', gamma=1)
svm3.fit(X_train, y_train)

Out[26]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=1, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

13

In [27]: # More flexible model
svm4 = SVC(C=1, kernel='rbf', gamma=50)
svm4.fit(X_train, y_train)

Out[27]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma=50, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

SVMs and support vector classifiers output class labels for each observation. However, it is
also possible to obtain fitted values for each observation, which are the numerical scores used to
obtain the class labels. For instance, in the case of a support vector classifier, the fitted value for
an observation X = (X1, X2, ..., Xp)

T takes the form β̂0 + β̂1X1 + β̂2X2 + ...+ β̂pXp.
For an SVM with a non-linear kernel, the equation that yields the fitted value is given in (9.23)

on p. 352 of the ISLR book. In essence, the sign of the fitted value determines on which side of
the decision boundary the observation lies. Therefore, the relationship between the fitted value
and the class prediction for a given observation is simple: if the fitted value exceeds zero then the
observation is assigned to one class, and if it is less than zero than it is assigned to the other.

In order to obtain the fitted values for a given SVM model fit, we use the .decision_function()
method of the SVC:

In []: y_train_score3 = svm3.decision_function(X_train)
y_train_score4 = svm4.decision_function(X_train)

Now we can produce the ROC plot to see how the models perform on both the training and
the test data:

In []: y_train_score3 = svm3.decision_function(X_train)
y_train_score4 = svm4.decision_function(X_train)

false_pos_rate3, true_pos_rate3, _ = roc_curve(y_train, y_train_score3)
roc_auc3 = auc(false_pos_rate3, true_pos_rate3)

false_pos_rate4, true_pos_rate4, _ = roc_curve(y_train, y_train_score4)
roc_auc4 = auc(false_pos_rate4, true_pos_rate4)

fig, (ax1,ax2) = plt.subplots(1, 2, figsize=(14,6))
ax1.plot(false_pos_rate3, true_pos_rate3, label='SVM $\gamma = 1$ ROC curve (area = %0.2f)' % roc_auc3, color='b')
ax1.plot(false_pos_rate4, true_pos_rate4, label='SVM $\gamma = 50$ ROC curve (area = %0.2f)' % roc_auc4, color='r')
ax1.set_title('Training Data')

y_test_score3 = svm3.decision_function(X_test)
y_test_score4 = svm4.decision_function(X_test)

false_pos_rate3, true_pos_rate3, _ = roc_curve(y_test, y_test_score3)
roc_auc3 = auc(false_pos_rate3, true_pos_rate3)

false_pos_rate4, true_pos_rate4, _ = roc_curve(y_test, y_test_score4)
roc_auc4 = auc(false_pos_rate4, true_pos_rate4)

14

ax2.plot(false_pos_rate3, true_pos_rate3, label='SVM $\gamma = 1$ ROC curve (area = %0.2f)' % roc_auc3, color='b')
ax2.plot(false_pos_rate4, true_pos_rate4, label='SVM $\gamma = 50$ ROC curve (area = %0.2f)' % roc_auc4, color='r')
ax2.set_title('Test Data')

for ax in fig.axes:
ax.plot([0, 1], [0, 1], 'k--')
ax.set_xlim([-0.05, 1.0])
ax.set_ylim([0.0, 1.05])
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.legend(loc="lower right")

To get credit for this lab, describe what the ROC plot is telling you about the SVM’s perfor-
mance on the test data and post to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=54

15

	9.6 Lab: Support Vector Machines
	9.6.1 Support Vector Classifier
	9.6.2 Support Vector Machine
	9.6.3 ROC Curves

