
Lab 14 - Decision Trees in Python

April 6, 2016

This lab on Decision Trees is a Python adaptation of p. 324-331 of “Introduction to Statistical Learning
with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. Original
adaptation by J. Warmenhoven, updated by R. Jordan Crouser at Smith College for SDS293: Machine
Learning (Spring 2016).

In []: import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import graphviz

%matplotlib inline

1 8.3.1 Fitting Classification Trees

The sklearn library has a lot of useful tools for constructing classification and regression trees:

In []: from sklearn.cross_validation import train_test_split

from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, export_graphviz

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor

from sklearn.metrics import confusion_matrix, mean_squared_error

We’ll start by using classification trees to analyze the Carseats data set. In these data, Sales is a
continuous variable, and so we begin by converting it to a binary variable. We use the ifelse() function to
create a variable, called High, which takes on a value of Yes if the Sales variable exceeds 8, and takes on a
value of No otherwise. We’ll append this onto our dataFrame using the .map() function, and then do a little
data cleaning to tidy things up:

In []: df3 = pd.read_csv(’Carseats.csv’).drop(’Unnamed: 0’, axis=1)

df3[’High’] = df3.Sales.map(lambda x: 1 if x>8 else 0)

df3.ShelveLoc = pd.factorize(df3.ShelveLoc)[0]

df3.Urban = df3.Urban.map({’No’:0, ’Yes’:1})

df3.US = df3.US.map({’No’:0, ’Yes’:1})

df3.info()

In order to properly evaluate the performance of a classification tree on the data, we must estimate the
test error rather than simply computing the training error. We first split the observations into a training set
and a test set:

In []: X = df3.drop([’Sales’, ’High’], axis=1)

y = df3.High

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5, random_state=0)

1

We now use the DecisionTreeClassifier() function to fit a classification tree in order to predict High
using all variables but Sales (that would be a little silly. . .). Unfortunately, manual pruning is not imple-
mented in sklearn: http://scikit-learn.org/stable/modules/tree.html

However, we can limit the depth of a tree using the max depth parameter:

In []: clf = DecisionTreeClassifier(max_depth=6)

clf.fit(X_train, y_train)

clf.score(X_train, y_train)

We see that the training accuracy is 95.5%.
One of the most attractive properties of trees is that they can be graphically displayed. Unfortunately,

this is a bit of a roundabout process in sklearn. We use the export graphviz() function to export the tree
structure to a temporary .dot file, and the graphviz.Source() function to display the image:

In []: export_graphviz(clf, out_file="mytree.dot", feature_names=X_train.columns)

with open("mytree.dot") as f:

dot_graph = f.read()

graphviz.Source(dot_graph)

The most important indicator of High sales appears to be Price.
Finally, let’s evaluate the tree’s performance on the test data. The predict() function can be used for

this purpose. We can then build a confusion matrix, which shows that we are making correct predictions for
around 74.5% of the test data set:

In []: pred = clf.predict(X_test)

cm = pd.DataFrame(confusion_matrix(y_test, pred).T, index=[’No’, ’Yes’], columns=[’No’, ’Yes’])

print(cm)

99+50/200 = 0.745

2 8.3.2 Fitting Regression Trees

Now let’s try fitting a regression tree to the Boston data set from the MASS library. First, we create a
training set, and fit the tree to the training data using medv (median home value) as our response:

In []: boston_df = pd.read_csv(’Boston.csv’)

X = boston_df.drop(’medv’, axis=1)

y = boston_df.medv

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5, random_state=0)

Pruning not supported. Choosing max depth 2)

regr2 = DecisionTreeRegressor(max_depth=2)

regr2.fit(X_train, y_train)

Let’s take a look at the tree:

In []: export_graphviz(regr2, out_file="mytree.dot", feature_names=X_train.columns)

with open("mytree.dot") as f:

dot_graph = f.read()

graphviz.Source(dot_graph)

The variable lstat measures the percentage of individuals with lower socioeconomic status. The tree
indicates that lower values of lstat correspond to more expensive houses. The tree predicts a median house
price of $45,766 for larger homes (rm >= 7.435) in suburbs in which residents have high socioeconomic status
(lstat < 7.81).

Now let’s see how it does on the test data:

2

In []: pred = regr2.predict(X_test)

plt.scatter(pred, y_test, label=’medv’)

plt.plot([0, 1], [0, 1], ’--k’, transform=plt.gca().transAxes)

plt.xlabel(’pred’)

plt.ylabel(’y_test’)

mean_squared_error(y_test, pred)

The test set MSE associated with the regression tree is 28.8. The square root of the MSE is therefore
around 5.37, indicating that this model leads to test predictions that are within around $5,370 of the true
median home value for the suburb.

3 8.3.3 Bagging and Random Forests

Let’s see if we can improve on this result using bagging and random forests. The exact results obtained
in this section may depend on the version of python and the version of the RandomForestRegressor package
installed on your computer, so don’t stress out if you don’t match up exactly with the book. Recall that
bagging is simply a special case of a random forest with m = p. Therefore, the RandomForestRegressor()
function can be used to perform both random forests and bagging. Let’s start with bagging:

In []: # Bagging: using all features

regr1 = RandomForestRegressor(max_features=13, random_state=1)

regr1.fit(X_train, y_train)

The argument max features = 13 indicates that all 13 predictors should be considered for each split of
the tree – in other words, that bagging should be done. How well does this bagged model perform on the
test set?

In []: pred = regr1.predict(X_test)

plt.scatter(pred, y_test, label=’medv’)

plt.plot([0, 1], [0, 1], ’--k’, transform=plt.gca().transAxes)

plt.xlabel(’pred’)

plt.ylabel(’y_test’)

mean_squared_error(y_test, pred)

The test setMSE associated with the bagged regression tree is significantly lower than our single tree!
We can grow a random forest in exactly the same way, except that we’ll use a smaller value of the

max features argument. Here we’ll use max features = 6:

In []: # Random forests: using 6 features

regr2 = RandomForestRegressor(max_features=6, random_state=1)

regr2.fit(X_train, y_train)

pred = regr2.predict(X_test)

mean_squared_error(y_test, pred)

The test set MSE is even lower; this indicates that random forests yielded an improvement over bagging
in this case.

Using the feature importances attribute of the RandomForestRegressor, we can view the importance
of each variable:

In []: Importance = pd.DataFrame({’Importance’:regr2.feature_importances_*100}, index=X.columns)

Importance.sort_values(by=’Importance’, axis=0, ascending=True).plot(kind=’barh’, color=’r’,)

plt.xlabel(’Variable Importance’)

plt.gca().legend_ = None

The results indicate that across all of the trees considered in the random forest, the wealth level of the
community (lstat) and the house size (rm) are by far the two most important variables.

3

4 8.3.4 Boosting

Now we’ll use the GradientBoostingRegressor package to fit boosted regression trees to the
Boston data set. The argument nestimators = 500 indicates that we want 500 trees, and the option
interaction.depth = 4 limits the depth of each tree:

In []: regr = GradientBoostingRegressor(n_estimators=500, learning_rate=0.01, max_depth=4, random_state=1)

regr.fit(X_train, y_train)

Let’s check out the feature importances again:

In []: feature_importance = regr.feature_importances_*100

rel_imp = pd.Series(feature_importance, index=X.columns).sort_values(inplace=False)

rel_imp.T.plot(kind=’barh’, color=’r’,)

plt.xlabel(’Variable Importance’)

plt.gca().legend_ = None

We see that lstat and rm are again the most important variables by far. Now let’s use the boosted
model to predict medv on the test set:

In []: mean_squared_error(y_test, regr.predict(X_test))

The test MSE obtained is similar to the test MSE for random forests and superior to that for bagging.
If we want to, we can perform boosting with a different value of the shrinkage parameter λ. Here we take
λ = 0.2:

In []: regr2 = GradientBoostingRegressor(n_estimators=500, learning_rate=0.2, max_depth=4, random_state=1)

regr2.fit(X_train, y_train)

mean_squared_error(y_test, regr2.predict(X_test))

In this case, using λ = 0.2 leads to a slightly lower test MSE than λ = 0.01.
To get credit for this lab, post your responses to the following questions: - What’s one real-world scenario

where you might try using Bagging? - What’s one real-world scenario where you might try using Random
Forests? - What’s one real-world scenario where you might try using Boosting?

to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=53

4

	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting

