
Lab 13 - Splines in Python

November 9, 2016

This lab on Splines and GAMs is a python adaptation of p. 293-297 of “Introduction to Sta-
tistical Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and
Robert Tibshirani. It was originally written by Jordi Warmenhoven, and was adapted by R. Jordan
Crouser at Smith College in Spring 2016.

In []: import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures
import statsmodels.api as sm
import statsmodels.formula.api as smf

%matplotlib inline

Read in the data
df = pd.read_csv('Wage.csv')

Generate a sequence of age values spanning the range
age_grid = np.arange(df.age.min(), df.age.max()).reshape(-1,1)

1 7.8.2 Splines

In order to fit regression splines in python, we use the dmatrix module from the patsy library. In
lecture, we saw that regression splines can be fit by constructing an appropriate matrix of basis
functions. The bs() function generates the entire matrix of basis functions for splines with the
specified set of knots. Fitting wage to age using a regression spline is simple:

In []: from patsy import dmatrix

Specifying 3 knots
transformed_x1 = dmatrix("bs(df.age, knots=(25,40,60), degree=3, include_intercept=False)",

{"df.age": df.age}, return_type='dataframe')

Build a regular linear model from the splines
fit1 = sm.GLM(df.wage, transformed_x1).fit()
fit1.params

1

Here we have prespecified knots at ages 25, 40, and 60. This produces a spline with six basis
functions. (Recall that a cubic spline with three knots has seven degrees of freedom; these degrees
of freedom are used up by an intercept, plus six basis functions.) We could also use the df option
to produce a spline with knots at uniform quantiles of the data:

In []: # Specifying 6 degrees of freedom
transformed_x2 = dmatrix("bs(df.age, df=6, include_intercept=False)",

{"df.age": df.age}, return_type='dataframe')
fit2 = sm.GLM(df.wage, transformed_x2).fit()
fit2.params

In this case python chooses knots which correspond to the 25th, 50th, and 75th percentiles of
age. The function bs() also has a degree argument, so we can fit splines of any degree, rather than
the default degree of 3 (which yields a cubic spline).

In order to instead fit a natural spline, we use the cr() function. Here we fit a natural spline
with four degrees of freedom:

In []: # Specifying 4 degrees of freedom
transformed_x3 = dmatrix("cr(df.age, df=4)", {"df.age": df.age}, return_type='dataframe')
fit3 = sm.GLM(df.wage, transformed_x3).fit()
fit3.params

As with the bs() function, we could instead specify the knots directly using the knots option.
Let’s see how these three models stack up:

In []: # Generate a sequence of age values spanning the range
age_grid = np.arange(df.age.min(), df.age.max()).reshape(-1,1)

Make some predictions
pred1 = fit1.predict(dmatrix("bs(age_grid, knots=(25,40,60), include_intercept=False)",

{"age_grid": age_grid}, return_type='dataframe'))
pred2 = fit2.predict(dmatrix("bs(age_grid, df=6, include_intercept=False)",

{"age_grid": age_grid}, return_type='dataframe'))
pred3 = fit3.predict(dmatrix("cr(age_grid, df=4)", {"age_grid": age_grid}, return_type='dataframe'))

Plot the splines and error bands
plt.scatter(df.age, df.wage, facecolor='None', edgecolor='k', alpha=0.1)
plt.plot(age_grid, pred1, color='b', label='Specifying three knots')
plt.plot(age_grid, pred2, color='r', label='Specifying df=6')
plt.plot(age_grid, pred3, color='g', label='Natural spline df=4')
plt.legend()
plt.xlim(15,85)
plt.ylim(0,350)
plt.xlabel('age')
plt.ylabel('wage')

To get credit for this lab, post your answer to the following question: - How would you choose
whether to use a polynomial, step, or spline function for each predictor when building a GAM?

2

	7.8.2 Splines

