
Lab 12 - Polynomial Regression and Step Functions in Python

March 27, 2016

This lab on Polynomial Regression and Step Functions is a python adaptation of p. 288-292 of “Intro-
duction to Statistical Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie
and Robert Tibshirani. Original adaptation by J. Warmenhoven, updated by R. Jordan Crouser at Smith
College for SDS293: Machine Learning (Spring 2016).

In [30]: import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures

import statsmodels.api as sm

import statsmodels.formula.api as smf

from patsy import dmatrix

%matplotlib inline

1 7.8.1 Polynomial Regression and Step Functions

In this lab, we’ll explore how to generate the Wage dataset models we saw in class.

In [2]: df = pd.read_csv(’Wage.csv’)

df.head(3)

Out[2]: year age sex maritl race education \
231655 2006 18 1. Male 1. Never Married 1. White 1. < HS Grad

86582 2004 24 1. Male 1. Never Married 1. White 4. College Grad

161300 2003 45 1. Male 2. Married 1. White 3. Some College

region jobclass health health ins \
231655 2. Middle Atlantic 1. Industrial 1. <=Good 2. No

86582 2. Middle Atlantic 2. Information 2. >=Very Good 2. No

161300 2. Middle Atlantic 1. Industrial 1. <=Good 1. Yes

logwage wage

231655 4.318063 75.043154

86582 4.255273 70.476020

161300 4.875061 130.982177

We first fit the polynomial regression model using the following commands:

In [25]: X1 = PolynomialFeatures(1).fit_transform(df.age.reshape(-1,1))

X2 = PolynomialFeatures(2).fit_transform(df.age.reshape(-1,1))

X3 = PolynomialFeatures(3).fit_transform(df.age.reshape(-1,1))

1

X4 = PolynomialFeatures(4).fit_transform(df.age.reshape(-1,1))

X5 = PolynomialFeatures(5).fit_transform(df.age.reshape(-1,1))

This syntax fits a linear model, using the PolynomialFeatures() function, in order to predict wage using
up to a fourth-degree polynomial in age. The PolynomialFeatures() command allows us to avoid having
to write out a long formula with powers of age. We can then fit our linear model:

In [4]: fit2 = sm.GLS(df.wage, X4).fit()

fit2.summary().tables[1]

Out[4]: <class ’statsmodels.iolib.table.SimpleTable’>

Next we consider the task of predicting whether an individual earns more than $250,000 per year. We
proceed much as before, except that first we create the appropriate response vector, and then we fit a logistic
model using the GLM() function from statsmodels:

In [26]: # Create response matrix

y = (df.wage > 250).map({False:0, True:1}).as_matrix()

Fit logistic model

clf = sm.GLM(y, X4, family=sm.families.Binomial(sm.families.links.logit))

res = clf.fit()

We now create a grid of values for age at which we want predictions, and then call the generic predict()
function for each model:

In [32]: # Generate a sequence of age values spanning the range

age_grid = np.arange(df.age.min(), df.age.max()).reshape(-1,1)

Generate test data

X_test = PolynomialFeatures(4).fit_transform(age_grid)

Predict the value of the generated ages

pred1 = fit2.predict(X_test) # salary

pred2 = res.predict(X_test) # Pr(wage>250)

Finally, we plot the data and add the fit from the degree-4 polynomial.

In [29]: # creating plots

fig, (ax1, ax2) = plt.subplots(1,2, figsize=(16,5))

fig.suptitle(’Degree-4 Polynomial’, fontsize=14)

Scatter plot with polynomial regression line

ax1.scatter(df.age, df.wage, facecolor=’None’, edgecolor=’k’, alpha=0.3)

ax1.plot(age_grid, pred1, color = ’b’)

ax1.set_ylim(ymin=0)

Logistic regression showing Pr(wage>250) for the age range.

ax2.plot(age_grid, pred2, color=’b’)

Rug plot showing the distribution of wage>250 in the training data.

’True’ on the top, ’False’ on the bottom.

ax2.scatter(df.age, y/5, s=30, c=’grey’, marker=’|’, alpha=0.7)

ax2.set_ylim(-0.01,0.21)

ax2.set_xlabel(’age’)

ax2.set_ylabel(’Pr(wage>250|age)’)

2

Out[29]: <matplotlib.text.Text at 0x10c29c828>

2 Deciding on a degree

In performing a polynomial regression we must decide on the degree of the polynomial to use. One way to
do this is by using hypothesis tests. We now fit models ranging from linear to a degree-5 polynomial and
seek to determine the simplest model which is sufficient to explain the relationship between wage and age.

We can do this using the anova lm() function, which performs an analysis of variance (ANOVA, using
an F-test) in order to test the null hypothesis that a model M1 is sufficient to explain the data against the
alternative hypothesis that a more complex model M2 is required. In order to use the anova lm() function,
M1 and M2 must be nested models: the predictors in M1 must be a subset of the predictors in M2. In this
case, we fit five different models and sequentially compare the simpler model to the more complex model:

In [22]: fit_1 = fit = sm.GLS(df.wage, X1).fit()

fit_2 = fit = sm.GLS(df.wage, X2).fit()

fit_3 = fit = sm.GLS(df.wage, X3).fit()

fit_4 = fit = sm.GLS(df.wage, X4).fit()

fit_5 = fit = sm.GLS(df.wage, X5).fit()

print(sm.stats.anova_lm(fit_1, fit_2, fit_3, fit_4, fit_5, typ=1))

df resid ssr df diff ss diff F Pr(>F)

0 2998 5022216.104743 0 NaN NaN NaN

1 2997 4793430.094614 1 228786.010128 143.593107 2.363850e-32

2 2996 4777674.400950 1 15755.693664 9.888756 1.679202e-03

3 2995 4771604.248826 1 6070.152124 3.809813 5.104620e-02

4 2994 4770321.685810 1 1282.563017 0.804976 3.696820e-01

The p-value comparing the linear Model 1 to the quadratic Model 2 is essentially zero (< 10−32), indicating
that a linear fit is not sufficient. Similarly the p-value comparing the quadratic Model 2 to the cubic Model
3 is very low (0.0017), so the quadratic fit is also insufficient. The p-value comparing the cubic and degree-4
polynomials, Model 3 and Model 4, is approximately 0.05 while the degree-5 polynomial Model 5 seems
unnecessary because its p-value is 0.37. Hence, either a cubic or a quartic polynomial appear to provide a
reasonable fit to the data, but lower- or higher-order models are not justified.

As an alternative to using hypothesis tests and ANOVA, we could choose the polynomial degree using
cross-validation as we have in previous labs.

3

3 Step functions

In order to fit a step function, we use the cut() function:

In [33]: df_cut, bins = pd.cut(df.age, 4, retbins=True, right=True)

df_cut.value_counts(sort=False)

Out[33]: (17.938, 33.5] 750

(33.5, 49] 1399

(49, 64.5] 779

(64.5, 80] 72

dtype: int64

Here cut() automatically picked the cutpoints at 33.5, 49, and 64.5 years of age. We could also have
specified our own cutpoints directly. Now let’s create a set of dummy variables for use in the regression:

In [38]: df_steps = pd.concat([df.age, df_cut, df.wage], keys=[’age’,’age_cuts’,’wage’], axis=1)

Create dummy variables for the age groups

df_steps_dummies = pd.get_dummies(df_steps[’age_cuts’])

Statsmodels requires explicit adding of a constant (intercept)

df_steps_dummies = sm.add_constant(df_steps_dummies)

An now to fit the models! The age < 33.5 category is left out, so the intercept coefficient of $94,160
can be interpreted as the average salary for those under 33.5 years of age, and the other coefficients can be
interpreted as the average additional salary for those in the other age groups.

In [39]: fit3 = sm.GLM(df_steps.wage, df_steps_dummies.drop([’(17.938, 33.5]’], axis=1)).fit()

fit3.summary().tables[1]

Out[39]: <class ’statsmodels.iolib.table.SimpleTable’>

We can produce predictions and plots just as we did in the case of the polynomial fit.

In [40]: # Put the test data in the same bins as the training data.

bin_mapping = np.digitize(age_grid.ravel(), bins)

Get dummies, drop first dummy category, add constant

X_test2 = sm.add_constant(pd.get_dummies(bin_mapping).drop(1, axis=1))

Predict the value of the generated ages using the linear model

pred2 = fit3.predict(X_test2)

And the logistic model

clf2 = sm.GLM(y, df_steps_dummies.drop([’(17.938, 33.5]’], axis=1),

family=sm.families.Binomial(sm.families.links.logit))

res2 = clf2.fit()

pred3 = res2.predict(X_test2)

Plot

fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,5))

fig.suptitle(’Piecewise Constant’, fontsize=14)

Scatter plot with polynomial regression line

ax1.scatter(df.age, df.wage, facecolor=’None’, edgecolor=’k’, alpha=0.3)

4

ax1.plot(age_grid, pred2, c=’b’)

ax1.set_xlabel(’age’)

ax1.set_ylabel(’wage’)

ax1.set_ylim(ymin=0)

Logistic regression showing Pr(wage>250) for the age range.

ax2.plot(np.arange(df.age.min(), df.age.max()).reshape(-1,1), pred3, color=’b’)

Rug plot showing the distribution of wage>250 in the training data.

’True’ on the top, ’False’ on the bottom.

ax2.scatter(df.age, y/5, s=30, c=’grey’, marker=’|’, alpha=0.7)

ax2.set_ylim(-0.01,0.21)

ax2.set_xlabel(’age’)

ax2.set_ylabel(’Pr(wage>250|age)’)

Out[40]: <matplotlib.text.Text at 0x10bdc5e80>

To get credit for this lab, post your responses to the following questions: - What is one real-world example
where you might try polynomial regression? - What is one real-world example where you might try using a
step function?

to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=48

5

	7.8.1 Polynomial Regression and Step Functions
	Deciding on a degree
	Step functions

