
Lab 11 - PCR and PLS Regression in Python

March 23, 2016

This lab on PCS and PLS in a python adaptation of p. 256-259 of “Introduction to Statistical Learning
with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. Original
adaptation by J. Warmenhoven, updated by R. Jordan Crouser at Smith College for SDS293: Machine
Learning (Spring 2016).

1 6.7.1 Principal Components Regression

Principal components regression (PCR) can be performed using the PCA() function, which is part of the
sklearn library. In this lab, we’ll apply PCR to the Hitters data, in order to predict Salary. As in
previous labs, we’ll start by ensuring that the missing values have been removed from the data:

In [13]: %matplotlib inline

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import scale

from sklearn import cross_validation

from sklearn.decomposition import PCA

from sklearn.linear_model import LinearRegression

from sklearn.cross_decomposition import PLSRegression, PLSSVD

from sklearn.metrics import mean_squared_error

df = pd.read_csv(’Hitters.csv’).dropna().drop(’Player’, axis=1)

df.info()

dummies = pd.get_dummies(df[[’League’, ’Division’, ’NewLeague’]])

<class ’pandas.core.frame.DataFrame’>

Int64Index: 263 entries, 1 to 321

Data columns (total 20 columns):

AtBat 263 non-null int64

Hits 263 non-null int64

HmRun 263 non-null int64

Runs 263 non-null int64

RBI 263 non-null int64

Walks 263 non-null int64

Years 263 non-null int64

CAtBat 263 non-null int64

CHits 263 non-null int64

CHmRun 263 non-null int64

CRuns 263 non-null int64

1

CRBI 263 non-null int64

CWalks 263 non-null int64

League 263 non-null object

Division 263 non-null object

PutOuts 263 non-null int64

Assists 263 non-null int64

Errors 263 non-null int64

Salary 263 non-null float64

NewLeague 263 non-null object

dtypes: float64(1), int64(16), object(3)

memory usage: 43.1+ KB

Let’s set up our data:

In [5]: y = df.Salary

Drop the column with the independent variable (Salary), and columns for which we created dummy variables

X_ = df.drop([’Salary’, ’League’, ’Division’, ’NewLeague’], axis=1).astype(’float64’)

Define the feature set X.

X = pd.concat([X_, dummies[[’League_N’, ’Division_W’, ’NewLeague_N’]]], axis=1)

Unfortunately sklearn does not have an implementation of PCA and regression combined like the pls,
package in R: https://cran.r-project.org/web/packages/pls/vignettes/pls-manual.pdf so we’ll have to do it
ourselves.

We’ll start by performing Principal Components Analysis (PCA), remembering to scale the data:

In [9]: pca = PCA()

X_reduced = pca.fit_transform(scale(X))

Let’s print out the first few variables of the first few principal components:

In [10]: pd.DataFrame(pca.components_.T).loc[:4,:5]

Out[10]: 0 1 2 3 4 5

0 0.198290 0.383784 -0.088626 0.031967 -0.028117 0.070646

1 0.195861 0.377271 -0.074032 0.017982 0.004652 0.082240

2 0.204369 0.237136 0.216186 -0.235831 -0.077660 0.149646

3 0.198337 0.377721 0.017166 -0.049942 0.038536 0.136660

4 0.235174 0.314531 0.073085 -0.138985 -0.024299 0.111675

Now we’ll perform 10-fold cross-validation to see how it influences the MSE:

In [14]: # 10-fold CV, with shuffle

n = len(X_reduced)

kf_10 = cross_validation.KFold(n, n_folds=10, shuffle=True, random_state=1)

regr = LinearRegression()

mse = []

Calculate MSE with only the intercept (no principal components in regression)

score = -1*cross_validation.cross_val_score(regr, np.ones((n,1)), y.ravel(), cv=kf_10, scoring=’mean_squared_error’).mean()

mse.append(score)

Calculate MSE using CV for the 19 principle components, adding one component at the time.

for i in np.arange(1, 20):

2

score = -1*cross_validation.cross_val_score(regr, X_reduced[:,:i], y.ravel(), cv=kf_10, scoring=’mean_squared_error’).mean()

mse.append(score)

Plot results

plt.plot(mse, ’-v’)

plt.xlabel(’Number of principal components in regression’)

plt.ylabel(’MSE’)

plt.title(’Salary’)

plt.xlim(xmin=-1);

We see that the smallest cross-validation error occurs when M = 18 components are used. This is barely
fewer than M = 19, which amounts to simply performing least squares, because when all of the components
are used in PCR no dimension reduction occurs. However, from the plot we also see that the cross-validation
error is roughly the same when only one component is included in the model. This suggests that a model
that uses just a small number of components might suffice.

We’ll do a little math to get the amount of variance explained by adding each consecutive principal
component:

In [15]: np.cumsum(np.round(pca.explained_variance_ratio_, decimals=4)*100)

Out[15]: array([38.31, 60.15, 70.84, 79.03, 84.29, 88.63, 92.26, 94.96,

96.28, 97.25, 97.97, 98.64, 99.14, 99.46, 99.73, 99.88,

99.95, 99.98, 99.99])

We’ll dig deeper into this concept in Chapter 10, but for now we can think of this as the amount of
information about the predictors or the response that is captured using M principal components. For
example, setting M = 1 only captures 38.31% of all the variance, or information, in the predictors. In
contrast, using M = 6 increases the value to 88.63%. If we were to use all M = p = 19 components, this
would increase to 100%.

Now let’s perform PCA on the training data and evaluate its test set performance:

3

In [16]: pca2 = PCA()

Split into training and test sets

X_train, X_test , y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.5, random_state=1)

Scale the data

X_reduced_train = pca2.fit_transform(scale(X_train))

n = len(X_reduced_train)

10-fold CV, with shuffle

kf_10 = cross_validation.KFold(n, n_folds=10, shuffle=True, random_state=1)

mse = []

Calculate MSE with only the intercept (no principal components in regression)

score = -1*cross_validation.cross_val_score(regr, np.ones((n,1)), y_train.ravel(), cv=kf_10, scoring=’mean_squared_error’).mean()

mse.append(score)

Calculate MSE using CV for the 19 principle components, adding one component at the time.

for i in np.arange(1, 20):

score = -1*cross_validation.cross_val_score(regr, X_reduced_train[:,:i], y_train.ravel(), cv=kf_10, scoring=’mean_squared_error’).mean()

mse.append(score)

plt.plot(np.array(mse), ’-v’)

plt.xlabel(’Number of principal components in regression’)

plt.ylabel(’MSE’)

plt.title(’Salary’)

plt.xlim(xmin=-1);

4

We find that the lowest cross-validation error occurs when M = 6 components are used. Now we’ll see
how it performs on the test data and compute the test MSE as follows:

In [17]: X_reduced_test = pca2.transform(scale(X_test))[:,:7]

Train regression model on training data

regr = LinearRegression()

regr.fit(X_reduced_train[:,:7], y_train)

Prediction with test data

pred = regr.predict(X_reduced_test)

mean_squared_error(y_test, pred)

Out[17]: 111994.42273636982

This test set MSE is competitive with the results obtained using ridge regression and the lasso. However,
as a result of the way PCR is implemented, the final model is more difficult to interpret because it does not
perform any kind of variable selection or even directly produce coefficient estimates.

2 6.7.2 Partial Least Squares

Scikit-learn PLSRegression gives same results as the pls package in R when using method =′ oscorespls′.
However, the standard method used is ′kernelpls′, which we’ll use here. Feel free tyo try out both.

In [21]: n = len(X_train)

10-fold CV, with shuffle

kf_10 = cross_validation.KFold(n, n_folds=10, shuffle=True, random_state=1)

mse = []

for i in np.arange(1, 20):

pls = PLSRegression(n_components=i)

score = cross_validation.cross_val_score(pls, scale(X_train), y_train, cv=kf_10, scoring=’mean_squared_error’).mean()

mse.append(-score)

Plot results

plt.plot(np.arange(1, 20), np.array(mse), ’-v’)

plt.xlabel(’Number of principal components in regression’)

plt.ylabel(’MSE’)

plt.title(’Salary’)

plt.xlim(xmin=-1)

Out[21]: (-1, 20.0)

5

The lowest cross-validation error occurs when only M = 2 partial least squares directions are used. We
now evaluate the corresponding test set MSE:

In [22]: pls = PLSRegression(n_components=2)

pls.fit(scale(X_train), y_train)

mean_squared_error(y_test, pls.predict(scale(X_test)))

Out[22]: 104711.20627773694

The test MSE is again comparable to the test MSE obtained using ridge regression, the lasso, and PCR.
To get credit for this lab, post your responses to the following questions: - What is the primary difference

between PCR and PLS? - Which method do you think tends to have lower bias? - Which method do you
think tends to have lower variance?

to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=42

6

	6.7.1 Principal Components Regression
	6.7.2 Partial Least Squares

