
Lab 10 - Ridge Regression and the Lasso in Python

March 9, 2016

This lab on Ridge Regression and the Lasso is a Python adaptation of p. 251-255 of “Introduction to
Statistical Learning with Applications in R” by Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibshirani. Adapted by R. Jordan Crouser at Smith College for SDS293: Machine Learning (Spring 2016).

1 6.6: Ridge Regression and the Lasso

In [95]: %matplotlib inline

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.preprocessing import scale

from sklearn import cross_validation

from sklearn.linear_model import Ridge, RidgeCV, Lasso, LassoCV

from sklearn.metrics import mean_squared_error

We will use the sklearn package in order to perform ridge regression and the lasso. The main functions
in this package that we care about are Ridge(), which can be used to fit ridge regression models, and Lasso()
which will fit lasso models. They also have cross-validated counterparts: RidgeCV() and LassoCV(). We’ll
use these a bit later.

Before proceeding, let’s first ensure that the missing values have been removed from the data, as described
in the previous lab.

In [96]: df = pd.read_csv(’Hitters.csv’).dropna().drop(’Player’, axis=1)

df.info()

dummies = pd.get_dummies(df[[’League’, ’Division’, ’NewLeague’]])

<class ’pandas.core.frame.DataFrame’>

Int64Index: 263 entries, 1 to 321

Data columns (total 20 columns):

AtBat 263 non-null int64

Hits 263 non-null int64

HmRun 263 non-null int64

Runs 263 non-null int64

RBI 263 non-null int64

Walks 263 non-null int64

Years 263 non-null int64

CAtBat 263 non-null int64

CHits 263 non-null int64

CHmRun 263 non-null int64

CRuns 263 non-null int64

CRBI 263 non-null int64

1

CWalks 263 non-null int64

League 263 non-null object

Division 263 non-null object

PutOuts 263 non-null int64

Assists 263 non-null int64

Errors 263 non-null int64

Salary 263 non-null float64

NewLeague 263 non-null object

dtypes: float64(1), int64(16), object(3)

memory usage: 43.1+ KB

We will now perform ridge regression and the lasso in order to predict Salary on the Hitters data. Let’s
set up our data:

In [97]: y = df.Salary

Drop the column with the independent variable (Salary), and columns for which we created dummy variables

X_ = df.drop([’Salary’, ’League’, ’Division’, ’NewLeague’], axis=1).astype(’float64’)

Define the feature set X.

X = pd.concat([X_, dummies[[’League_N’, ’Division_W’, ’NewLeague_N’]]], axis=1)

X.info()

<class ’pandas.core.frame.DataFrame’>

Int64Index: 263 entries, 1 to 321

Data columns (total 19 columns):

AtBat 263 non-null float64

Hits 263 non-null float64

HmRun 263 non-null float64

Runs 263 non-null float64

RBI 263 non-null float64

Walks 263 non-null float64

Years 263 non-null float64

CAtBat 263 non-null float64

CHits 263 non-null float64

CHmRun 263 non-null float64

CRuns 263 non-null float64

CRBI 263 non-null float64

CWalks 263 non-null float64

PutOuts 263 non-null float64

Assists 263 non-null float64

Errors 263 non-null float64

League N 263 non-null float64

Division W 263 non-null float64

NewLeague N 263 non-null float64

dtypes: float64(19)

memory usage: 41.1 KB

2 6.6.1 Ridge Regression

The Ridge() function has an alpha argument (λ, but with a different name!) that is used to tune the model.
We’ll generate an array of alpha values ranging from very big to very small, essentially covering the full
range of scenarios from the null model containing only the intercept, to the least squares fit:

2

In [98]: alphas = 10**np.linspace(10,-2,100)*0.5

alphas

Out[98]: array([5.00000000e+09, 3.78231664e+09, 2.86118383e+09,

2.16438064e+09, 1.63727458e+09, 1.23853818e+09,

9.36908711e+08, 7.08737081e+08, 5.36133611e+08,

4.05565415e+08, 3.06795364e+08, 2.32079442e+08,

1.75559587e+08, 1.32804389e+08, 1.00461650e+08,

7.59955541e+07, 5.74878498e+07, 4.34874501e+07,

3.28966612e+07, 2.48851178e+07, 1.88246790e+07,

1.42401793e+07, 1.07721735e+07, 8.14875417e+06,

6.16423370e+06, 4.66301673e+06, 3.52740116e+06,

2.66834962e+06, 2.01850863e+06, 1.52692775e+06,

1.15506485e+06, 8.73764200e+05, 6.60970574e+05,

5.00000000e+05, 3.78231664e+05, 2.86118383e+05,

2.16438064e+05, 1.63727458e+05, 1.23853818e+05,

9.36908711e+04, 7.08737081e+04, 5.36133611e+04,

4.05565415e+04, 3.06795364e+04, 2.32079442e+04,

1.75559587e+04, 1.32804389e+04, 1.00461650e+04,

7.59955541e+03, 5.74878498e+03, 4.34874501e+03,

3.28966612e+03, 2.48851178e+03, 1.88246790e+03,

1.42401793e+03, 1.07721735e+03, 8.14875417e+02,

6.16423370e+02, 4.66301673e+02, 3.52740116e+02,

2.66834962e+02, 2.01850863e+02, 1.52692775e+02,

1.15506485e+02, 8.73764200e+01, 6.60970574e+01,

5.00000000e+01, 3.78231664e+01, 2.86118383e+01,

2.16438064e+01, 1.63727458e+01, 1.23853818e+01,

9.36908711e+00, 7.08737081e+00, 5.36133611e+00,

4.05565415e+00, 3.06795364e+00, 2.32079442e+00,

1.75559587e+00, 1.32804389e+00, 1.00461650e+00,

7.59955541e-01, 5.74878498e-01, 4.34874501e-01,

3.28966612e-01, 2.48851178e-01, 1.88246790e-01,

1.42401793e-01, 1.07721735e-01, 8.14875417e-02,

6.16423370e-02, 4.66301673e-02, 3.52740116e-02,

2.66834962e-02, 2.01850863e-02, 1.52692775e-02,

1.15506485e-02, 8.73764200e-03, 6.60970574e-03,

5.00000000e-03])

Associated with each alpha value is a vector of ridge regression coefficients, which we’ll store in a matrix
coefs. In this case, it is a 19 × 100 matrix, with 19 rows (one for each predictor) and 100 columns (one for
each value of alpha). Remember that we’ll want to standardize the variables so that they are on the same
scale. To do this, we can use the normalize = True parameter:

In [99]: ridge = Ridge(normalize=True)

coefs = []

for a in alphas:

ridge.set_params(alpha=a)

ridge.fit(X, y)

coefs.append(ridge.coef_)

np.shape(coefs)

Out[99]: (100, 19)

We expect the coefficient estimates to be much smaller, in terms of l2 norm, when a large value of alpha
is used, as compared to when a small value of alpha is used. Let’s plot and find out:

3

In [100]: ax = plt.gca()

ax.plot(alphas, coefs)

ax.set_xscale(’log’)

plt.axis(’tight’)

plt.xlabel(’alpha’)

plt.ylabel(’weights’)

Out[100]: <matplotlib.text.Text at 0x10ec3c5c0>

We now split the samples into a training set and a test set in order to estimate the test error of ridge
regression and the lasso:

In [101]: # Use the cross-validation package to split data into training and test sets

X_train, X_test , y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.5, random_state=1)

Next we fit a ridge regression model on the training set, and evaluate its MSE on the test set, using
λ = 4:

In [102]: ridge2 = Ridge(alpha=4, normalize=True)

ridge2.fit(X_train, y_train) # Fit a ridge regression on the training data

pred2 = ridge2.predict(X_test) # Use this model to predict the test data

print(pd.Series(ridge2.coef_, index=X.columns)) # Print coefficients

print(mean_squared_error(y_test, pred2)) # Calculate the test MSE

AtBat 0.098658

Hits 0.446094

HmRun 1.412107

Runs 0.660773

RBI 0.843403

Walks 1.008473

4

Years 2.779882

CAtBat 0.008244

CHits 0.034149

CHmRun 0.268634

CRuns 0.070407

CRBI 0.070060

CWalks 0.082795

PutOuts 0.104747

Assists -0.003739

Errors 0.268363

League N 4.241051

Division W -30.768885

NewLeague N 4.123474

dtype: float64

106216.52238

The test MSE when alpha = 4 is 106216. Now let’s see what happens if we use a huge value of alpha,
say 1010:

In [103]: ridge3 = Ridge(alpha=10**10, normalize=True)

ridge3.fit(X_train, y_train) # Fit a ridge regression on the training data

pred3 = ridge3.predict(X_test) # Use this model to predict the test data

print(pd.Series(ridge3.coef_, index=X.columns)) # Print coefficients

print(mean_squared_error(y_test, pred3)) # Calculate the test MSE

AtBat 1.317464e-10

Hits 4.647486e-10

HmRun 2.079865e-09

Runs 7.726175e-10

RBI 9.390640e-10

Walks 9.769219e-10

Years 3.961442e-09

CAtBat 1.060533e-11

CHits 3.993605e-11

CHmRun 2.959428e-10

CRuns 8.245247e-11

CRBI 7.795451e-11

CWalks 9.894387e-11

PutOuts 7.268991e-11

Assists -2.615885e-12

Errors 2.084514e-10

League N -2.501281e-09

Division W -1.549951e-08

NewLeague N -2.023196e-09

dtype: float64

172862.235804

This big penalty shrinks the coefficients to a very large degree, essentially reducing to a model containing
just the intercept. This over-shrinking makes the model more biased, resulting in a higher MSE.

Okay, so fitting a ridge regression model with alpha = 4 leads to a much lower test MSE than fitting
a model with just an intercept. We now check whether there is any benefit to performing ridge regression
with alpha = 4 instead of just performing least squares regression. Recall that least squares is simply ridge
regression with alpha = 0.

In [104]: ridge2 = Ridge(alpha=0, normalize=True)

ridge2.fit(X_train, y_train) # Fit a ridge regression on the training data

5

pred = ridge2.predict(X_test) # Use this model to predict the test data

print(pd.Series(ridge2.coef_, index=X.columns)) # Print coefficients

print(mean_squared_error(y_test, pred)) # Calculate the test MSE

AtBat -1.821115

Hits 4.259156

HmRun -4.773401

Runs -0.038760

RBI 3.984578

Walks 3.470126

Years 9.498236

CAtBat -0.605129

CHits 2.174979

CHmRun 2.979306

CRuns 0.266356

CRBI -0.598456

CWalks 0.171383

PutOuts 0.421063

Assists 0.464379

Errors -6.024576

League N 133.743163

Division W -113.743875

NewLeague N -81.927763

dtype: float64

116690.468567

It looks like we are indeed improving over regular least-squares!
Instead of arbitrarily choosing alpha $ = 4$, it would be better to use cross-validation to choose the

tuning parameter alpha. We can do this using the cross-validated ridge regression function, RidgeCV(). By
default, the function performs generalized cross-validation (an efficient form of LOOCV), though this can
be changed using the argument cv.

In [105]: ridgecv = RidgeCV(alphas=alphas, scoring=’mean_squared_error’, normalize=True)

ridgecv.fit(X_train, y_train)

ridgecv.alpha_

Out[105]: 0.57487849769886779

Therefore, we see that the value of alpha that results in the smallest cross-validation error is 0.57. What
is the test MSE associated with this value of alpha?

In [106]: ridge4 = Ridge(alpha=ridgecv.alpha_, normalize=True)

ridge4.fit(X_train, y_train)

mean_squared_error(y_test, ridge4.predict(X_test))

Out[106]: 99825.648962927298

This represents a further improvement over the test MSE that we got using alpha $ = 4$. Finally, we
refit our ridge regression model on the full data set, using the value of alpha chosen by cross-validation, and
examine the coefficient estimates.

In [107]: ridge4.fit(X, y)

pd.Series(ridge4.coef_, index=X.columns)

Out[107]: AtBat 0.055838

Hits 0.934879

6

HmRun 0.369048

Runs 1.092480

RBI 0.878259

Walks 1.717770

Years 0.783515

CAtBat 0.011318

CHits 0.061101

CHmRun 0.428333

CRuns 0.121418

CRBI 0.129351

CWalks 0.041990

PutOuts 0.179957

Assists 0.035737

Errors -1.597699

League N 24.774519

Division W -85.948661

NewLeague N 8.336918

dtype: float64

As expected, none of the coefficients are exactly zero - ridge regression does not perform variable selection!

3 6.6.2 The Lasso

We saw that ridge regression with a wise choice of alpha can outperform least squares as well as the null model
on the Hitters data set. We now ask whether the lasso can yield either a more accurate or a more interpretable
model than ridge regression. In order to fit a lasso model, we’ll use the Lasso() function; however, this time
we’ll need to include the argument maxiter = 10000. Other than that change, we proceed just as we did in
fitting a ridge model:

In [109]: lasso = Lasso(max_iter=10000, normalize=True)

coefs = []

for a in alphas:

lasso.set_params(alpha=a)

lasso.fit(scale(X_train), y_train)

coefs.append(lasso.coef_)

ax = plt.gca()

ax.plot(alphas*2, coefs)

ax.set_xscale(’log’)

plt.axis(’tight’)

plt.xlabel(’alpha’)

plt.ylabel(’weights’)

Out[109]: <matplotlib.text.Text at 0x10f062b38>

7

Notice that in the coefficient plot that depending on the choice of tuning parameter, some of the coeffi-
cients are exactly equal to zero. We now perform 10-fold cross-validation to choose the best alpha, refit the
model, and compute the associated test error:

In [110]: lassocv = LassoCV(alphas=None, cv=10, max_iter=100000, normalize=True)

lassocv.fit(X_train, y_train)

lasso.set_params(alpha=lassocv.alpha_)

lasso.fit(X_train, y_train)

mean_squared_error(y_test, lasso.predict(X_test))

Out[110]: 104960.65853895503

This is substantially lower than the test set MSE of the null model and of least squares, and only a little
worse than the test MSE of ridge regression with alpha chosen by cross-validation.

However, the lasso has a substantial advantage over ridge regression in that the resulting coefficient
estimates are sparse. Here we see that 13 of the 19 coefficient estimates are exactly zero:

In [111]: # Some of the coefficients are now reduced to exactly zero.

pd.Series(lasso.coef_, index=X.columns)

Out[111]: AtBat 0.000000

Hits 1.082446

HmRun 0.000000

Runs 0.000000

RBI 0.000000

Walks 2.906388

Years 0.000000

CAtBat 0.000000

CHits 0.000000

8

CHmRun 0.219367

CRuns 0.000000

CRBI 0.513975

CWalks 0.000000

PutOuts 0.368401

Assists -0.000000

Errors -0.000000

League N 0.000000

Division W -89.064338

NewLeague N 0.000000

dtype: float64

To get credit for this lab, post your responses to the following questions: - How do ridge regression and
the lasso improve on simple least squares? - In what cases would you expect ridge regression outperform the
lasso, and vice versa? - What was the most confusing part of today’s class?

to Piazza: https://piazza.com/class/igwiv4w3ctb6rg?cid=38

9

	6.6: Ridge Regression and the Lasso
	6.6.1 Ridge Regression
	6.6.2 The Lasso

