

Outline

- Introduction
 Motivation
- Objective

 Analyze the reliability of a remote wind-diesel microgrid system as demand grows over a period of time.

- Method
 - Estimating Load data
 - Determine wind power generated given wind speeds
 - Transmission system layout
 - Power flow modeling and simulation in MATLAB.
- Results

fopt.com

fppt.com

Quantify system reliability

Introduction

- Dominant energy source for non-electrified households is wood fuel.
- Associated with adverse health and environmental effects.

fppt.com

Introduction

- National grid electricity supply to low density areas results in high capital outlays, large transmission losses and less reliable electric services.
- Rural Electrification Programs can be better achieved through wind-diesel microgrids.

Objective

- Model a wind-diesel system and analyze its reliability as load increases over a period of 8 years
 - Based on the % of wind energy predicted to go into the system compared to the actual % from the wind energy output curve at the same load level as that of the power flow model.
 - Investigate the impact of varying the diesel generator unit size on the contribution of wind energy to the system.

Case study: Marsabit, Kenya

- Located in the Eastern Province of Kenya.
- Population of 37,445 people.
- Trading and Commercial Centre.
- Grid ends 263 km from Marsabit.

fopt.com

Load Data Analysis

- Based on a survey was done in Fatick, a rural village in Senegal to determine the daily energy demand per household.
- Load analysis broken down into four sectors:
 - Residential load: Homes connected to the grid
 - Commercial load: General and hardware stores, hotels and restaurants
 - Municipal load: Banks, health centers, airports, post offices and government offices

- Schools

fppt.com

fppt.com

Load Data Analysis

- 1500 homes connected to the grid
- 6 hotels and 3 hardware stores
 3 banks, 5 health centers, 1 post office, 1 government office and 1
- airport. 10 schools, each with 1 lamp
- operating 9 hours a day
- Residential load660 kWhCommercial load54.12 kWhMunicipal load27 kWhSchools7.92 kWhTotal749 kWh

TABLE I. ENERGY CONSUMED BY A RESIDENTIAL I	BUILDING
---	----------

Appliance	Number of appliances	Power rating (W)	Operation time (hrs)	Energy (Wh/day)
Electrical lamp	5	11	3	165
Radio	1	15	5	75
Black & White TV	1	40	5	200
		110		440

TABLE II. ENERGY CONSUMED BY A MUNICIPAL BUILDING

Appliance	Number of appliances	Power rating (W)	Operation time (hrs)	Energy (Wh/day)
Electrical lamp	8	11	3	264
Radio	1	15	5	75
Black & White TV	1	40	5	200
Refrigerat or	1	100	19	1900
		243		2439

Wind Power Analysis

- Min Power output of 53.23 kW.
- Power output at peak load: 113 kW

fppt.com

Transmission System Layout

Transmission System Layout

- Transmission line resistance:
 - 0.1576 Ω/km
- Transmission line reactance:
 - 0.0968 Ω/km

fppt.con

Source: The Kenya Power and Lighting Company. " Design, supply and installation of substation & transmission line: volume II," unpublished

Power Flow Simulation

- Scenario 1:
 - Diesel generator capacity from 2 of the 4 units, the 740-kW and the 435.3-kW generator (Total: 1,175.3 kW)
 - Wind capacity of 650 kW, only 485 kW of this is actual wind power output
 - Additional wind capacity of 500 kW added after 4 years to meet the growing demand

fppt.con

Power Flow Simulation

Scenario 2:

- Diesel generator capacity from all 4 units. (Total: 1983.5 kW)
- Wind capacity of 650 kW, only 485 kW of this is actual wind power output
- No Additional wind capacity added

Power Flow Simulation

Scenario 3:

fopt.com

fopt.com

- Diesel generator capacity from 2 smaller units, the 435.3-kW and the 217.6-kW generator. (Total: 652.9 kW)
- Wind capacity of 650 kW, only 485 kW of this is actual wind power output
- Additional wind capacity of 1000 kW added after 4 years to meet the growing demand

 Wind-diesel microgrid systems tends to be more reliable if the diesel generator capacity is increased as opposed to wind capacity during power system expansion to meet the growing demand.

fppt.com

Questions?

