1. Introduction

A rapid electrification program in South Africa saw three million new electric connections made in the 1990s, leading to a doubling in electricity demand. However, the generation capacity did not increase at the same rate which resulted in increasing numbers of unplanned blackouts in the 2000s. In the years since apartheid, the South African government set forth multiple energy policies all affirming support for incorporating renewable. This project examined rural electrification in South Africa focusing on the design of hybrid off-grid electric systems. The overarching theme is to not determine exact system configurations which can be implemented, but rather to determine the methods and information that is needed to find potential system configurations.

2. Methods Overview

A rural electrification project consists of multiple steps which are site selection, load prediction, resource assessment, technology selection, and finally system configuration. The choice of site shapes the rest of the project and a model to identify potential sites was built in ArcGIS. Load prediction was done by using a load modelling tool developed in MATLAB. Resource assessment requires finding the wind and solar resources at the site in question, while technology selection involved finding manufacturers of the technologies used in the systems. Possible system configurations were found using two models, one was through HOMER software and the other was a model based on solar geometry. Figure 1 provides a visual overview of the design process, with purple boxes representing collected data, orange boxes representing computational software or methods used, and the green boxes representing the outputs.

3. Site Selection

Site selection was carried out using ArcGIS software in combination with South African census data and GIS data about South African power plants. The site selection model finds potential sites based on criteria such as the distance from urban centres and the fraction of households that already use electricity for lighting, and the entire model is shown in Figure 2, with the results shown in Figure 3.

4. Load Profile Modelling

A load profile modelling tool was developed using MATLAB, which included elements to account for day-to-day variation. Two different levels of load were considered, one very low level which has minimal appliances and another which adds more energy intensive appliances. The appliances at the high load level are shown in Table 1. Figure 4 shows the load profile for one household over one week, showing the daily variation.

5. HOMER Modelling

HOMER requires a large number of inputs including the solar and wind resources at the site, the fuel prices, system constraints, interest rate, and technical specifications for all components. Each component has to be specified, detailing capital cost, maintenance cost, replacement costs, and different sizes to consider. For each site six different simulations were run pertaining to different load levels and different levels of load aggregation. A simulation was also run to study how the price of diesel affects the overall system configurations, with the historical diesel price shown in Figure 5.

6. Conclusions

The final system configurations obtained from these models showed that rural electrification using hybrid off-grid systems is possible, and that the best options seem to involve setting up multiple household systems as that reduces the cost for the individual households.

7. Future Work

- Adding functionality of the load profile tool to increase modelled variability
- Finding more components to better match the electric demand
- Simulating the system designs for other levels of aggregation

Acknowledgements

Thanks go to Judith Cardell, my thesis advisor, and to Denise McKahn, my second reader for their invaluable feedback and to Jon Caris for the help with ArcGIS.

References