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A methodology is presented for modeling load shapes in the residential 
sector by using hourly whole-house metered data and temperature. Individual 
household-level load data are analyzed to achieve data smoothing (noise 
rejection) and comprcssiOn (in the ratio of approximately WA), and to 
disaggregate the weatherdependent and weather-independent components of 
the load. The weather-independent (lifestyle) w m p e n t  is modeled as a 
weighted sum of orthogonal functions (primarily sinusoids and boxcars), 
while the weatherdependent u n n p e n t  is modeled as a non-linear dynamic 
system based upon thermodynamic principles. Numerical examples show 
efficient representation of data and good model fit. 

I. INTRODUCI'ION 

End-use load shape forecasting plays an important role in the planning 
efforts of many electric utilities. It provides detailed time-of-use information 
and a vehicle for evaluating the impact of various types of utility demand- 
side programs, as well as the changing mix of consumer end-use devices. 
Such evaluations assume increasing importance as utilities attempt to develop 
robust planning and rate policies in uncertain economic and regulatory 
environments and to manage the load on a selective end-use basis in order to 
achieve efficient operation. 

Three methods have been used for developing end-use load shape models: 
load research, engineering models, and statistical methods. 

Lwd rcscurch is the traditional method for determining end-use load 
shapes. The Edison Electric Institute has compiled appliance use data 
for many years, and this data base is being expanded by the load 
research data collected in response to the Public Utilities Regulatory 
Policy Act (PURPA). Load research data is expensive to collect, 
validate, and maintain. Its direct use in forecasting presumes that 
future behavior will be similar to historical patterns, and provides no 
means for evaluation of changing economic, demographic, or appliance 
conditions. 
Engineering models attempt to construct the load shape from knowledge 
of the engineering characteristics of appliances and the dwelling in 
which they are located. These simulation models tend to be complex 
and expensive to develop, and are based on theoretical considerations 
that do not reflect the economic and demographic factors influencing 
load shape. Their use for evaluation of economic or policy issues is 
minimal. 
Statistical methods emerged from the combination of noncausal time 
series approaches to load shape modeling, and causal econometric 
analyses of demand. These methods are distinguished by their use of 
historical data and statistical techniques. They attempt to describe load 
shapes as functions of economic data, customer and dwelling 
characteristics, the characteristics of customer appliances, and weather 
variables. 

There is a vast literature drawing upon one or more of these techniques. 
including the work of Farmer (1%3, 1966), Srinivasan and Pronwost (1979, 
Platt et al. (1976), Brice and Jones (1978). Belilr et al. (1978), Debs and 
Chong (1979), Simons et d. (1979). Belston and Barrager (1979). Nelson er al. 
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(1979), Jones and Brice (1979), Utility Modeling Forum (19t30), Abu-El-Magd 
and Sinha (1981), Andrews and McDonald (1981), Broehl (1981), Calloway 
and Brice (1982), Brice and Pahwa (1982), Brice et al. (1982), Ruane (1983), 
and Walker and Pokoski (1985), who study the modeling and forecasting of 
load shapes in general, as well as Davis (1958), Galiana and Schweppe 
(1972), Gupta and Yamada (1972), Corpening et al. (1973), Woodard (1974, 
1979), Ruane et al. (1978), Roy (1981). Pahwa (1983), and Pahwa and Brice 
(1985) who deal specifically with weatherdependent load shapes. 

This paper describes part of a new approach to end-use load shape 
estimation, integrating these three methods in a single common framework. 
It accounts for significant causal factors, such as thermal build-up effects and 
socioeconomic and demographic factors influencing demand. It provides 
improved parameter estimation through the use of statistically efficient 
generalizations of conventional regression methods. 

Computational efficiency is maintained by integrating engineering and load 
research data with observations of the load, while decomposing the overall 
modeling and estimation problem into two levels: longitudid rime series 
Mnlysis models the load shape on a single-house basis, while cross-sectional 
Mnlysis determines the influence of socioeconomic and demographic factors 
on the load. The former, including modeling and weather-normalization of 
individual households, is discussed here; the latter is described in a 
forthcoming paper (Schick, Usoro, Ruane, and Hausman, 1987). The overall 
approach is presented in greater detail in Usoro, Schick and Ruane (1986). 

This method is characterized by low cost, modest data collection needs, 
explicit causal structure, and a historical bask in both structure and 
parameter values. 

II. GENERAL MODELING METHODOLOGY 

Functional relationship betweem residential end-use loads and household 
characteristics are sought in order to (i) disaggregate household-level load 
shapes into end-use (appliance-level) load shapes, and (U) estimate end-use, 
household-level, and aggregate (service area) load shapes on the basis of 
household or service area characteristics. To make the most efficient use of 
the load shape data, it is useful to represent them by a small set of 
parameters which must contain most if not all of the relevant information. 
Since purely random or unpredictable phenomena contribute nothing to the 
model, they may be eliminated; however, systematic load behavior such as 
weatherdependence, periodic cycling, or regularly used discretionary loads, 
must be captured in such a way that they can be reconstructed given only 
those parameters. In that sense., the parameters may informally be 
considered sgf icunr staristics for the weatherdependent and weather- 
independent systematic components of the load shapes. 

Some researchers have sought to reduce the dimensionality of the data by 
data aggregation. However. that method has potential shortcomings: for 
instance, averaging across days may yield typical hour-ofday data where 
weather effects vanish beyond grand means. Alternatively, grouping portions 
of the day results in simpler data, but lases information on hour-to-hour 
variation. In the present approach, the data is considered as a continuous 
signal in additive noise, thereby avoiding discontinuities and precisely 
reflecting weather and other effects. The method of hierarchical regression, 
used in econometrics and social science research, is utilized (Hausman and 
MacFadden, 1979). This results in a two-level approach, consisting of the 
following: 
0 Level A, where load data for an individual household is compressed 

into a much smaller number of parameters which contain much of the 
information relevant to the problem at hand, i.e. most of the 
dependence on household characteristics. 
Level B, where the compressed data extracted from the load shapes of 
each household in Level A is reegressed on the household characteristics 
in a cross-sectional population study. 

0885-8950/88/02OO-02 13$0 1 .OO 0 1988 IEEE 



214 

The method used at Level A for data compression consists of defining a set 
of meaningful predictors and regressing the load shape onto them; clearly, 
the difficulty lies in chwsing these predictors, and that is the main topic of 
this paper. 

Once a set of predictors is chosen, load shapes may be compressed into a 
small set of numbers ("Level A parameters") - specifically, those that 
parametrize the predictors, and the coefficients that multiply them. 
Conversely, and more interestingly, given a set of Level A parameters, one 
can reconstruct the load shape with minimal IOJS of information. Since the 
Level A parameters are for various rcasom easier to modcl efficiently as 
functions of household characteristics, this yields a powcrful approach for 
estimating load shapes given socio-eumomic. demographic, and appliance 
holding information. 

III. MODELING INDIVIDUAL EOUSEHOLDS 

Household-level total home load datasets are large. A three-year study of 
several hundred homes might contain 106 to lo' readings. At the same time, 
the load shapes are often strongly periodic, reflecting diurnal weather 
variations, weekdayweekend work patterns, and the daily and weekly habits 
of the occupants. Random irregularities in household periodic behavior can 
be treated as noise, while systematic irregularities due to holidays or changes 
in household characteristics must be detected and removed (see Usoro. 
Schick and Ruane, 1986b). The remaining systematic patterns can essentially 
be suMvided into weather-independent (lifestyle) and weatherdependent 
camponcuts of the load the individual household is modeled as 

Y ( n )  = Y h )  + Y, ( n )  

where y ( n )  is the total (household-level) load during hour n ,  yv is the 
weatherdependent component. and y1 is the weather-independent (lifestyle) 
component. Appliances whose use depends primarily upon the weather, such 
as electric space heaters and air conditioners, are responsible for the former; 
essentially Westyle-based appliances such as electric ranges, clothes washers 
and dryers, and lighting, comprise the latter. 

This approach yields a high rate of data compression, which not only allows 
more efficient representation of the load shapes but atso highlights those 
aspects of the data which are most likely to be related to the household 
characteristics - i.e. comprises a more "meaningful" parameter set. Thus, 
while the load at any given p in t  in time may not be explained efficiently, 
say, by family income, dishwasher ownership, or commitment to energy 
conservation for a particular household, the periodic behavior, or the 
response time to outside temperature changes for that household, are likely 
to bear a much more direct connection to the household characteristics. 
Consequently, rather than regresing the load directly onto the household 
characteristics. the intermediate step in Level A is introduced. A system 
identification approach is adopted for modeling individual household loads: a 
model structure is postulated and available data are used to estimate 
statistidy the values of its parameters. Since the final goal is to determine 
functional relationships between household characteristics and load shapes. 
the chosen model structure is fundamentally physically-based. 

Figure 3.1 (a) Raw data of load exhibiting strong daily and weak weekly 
periodicities. 

The goal of this effort was to select functions of time +,(n) to efficiently 
(parsimoniously) represent the weather-independent component of the load, 
i.e. to set 

Y, ( n )  = 3 =I +I(.) 

where a, are householddependent coefficients to be determined. 

The use of Fourier or other orthonormal functions to model the weather- 
independent component of the load is warranted both by intuition and by 
analysis of the frequency content of the data. A large number of household- 
level load shapes were Fourier transfonned, and their' amplitude spectra 
were examined. The load shapes yielded line spectra m p e h @  upon 
relatively low level noise. For instance, the load shape in Figure 3.1 has a 
clearly Visible daily periodicity, which appears as a series of peaks in the 
amplitude spectrum at locations caresponding to frequencies of 24 hours 
and its harmonics. A much weaker periodicity is evident at harmonics of 168 
hours (1 week). In contrast, Figure 32 appears to be the load shape of a 
weekend home: weekday loads Consist of low level cycling of refrigerators 
and the like, while weekends show evidence of higher power wnsumption as 
well as more erratic consumption patterns. The amplitude spectrum features 
prominent peaks at the reciprocal of 168 hours and its harmonics, and much 
weaker peaks related to 24 hour periodicitics. 

These results were typical of the spectra okrved for household-level load 
shapes, and suggested the use of sinusoidal predictors to express the 
weather-independent component of the load. Smce the gd was to capture 
the most information in as few terms as possible. some related predictors 
were also incorporated. The following functions were used: 
e 

e 

e 

P 
5 

9 

Additive sinusoids: functions of the f a m  

The frequencies were chosen to be daily, weekly, and PogSiMy seasonal 
harmonics. 
Multiplicative sinusoids: functions of the form 

The frequency pairs ( m i , % )  were (daily, weekly) and (daily, 
seasonal) harmonics. These captured a great deal of the seasonal 
variation in lifestyle patterns. This multiplicative modcl upproximutes a 
twodimensional Fourier transform, first for each day, and then across 
the days for the entire year. 
Multiplicative boxcars (dummy variables): functions of the form 

where s(n)  is either zero or one. depending on the day of the week to 
which the data point corresponds. Boxcar functions can capture abrupt 

iy 
1/24 

I 

Frequency 

Figure 3.1 @) Amplitude spectrum of load exhibiting arong daily and weak 
weekly penodicities. 
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Figure 3 2  (a) Raw data of load exhibiting strong weekly periodicity. 

changes, such as the weekday-weekend pattern in Figure 32, in a few 
terms. 
Additive hxcars (dummy variables): functions of the form 0 

+An) = 8(n) 

where 8(n)  is either zero or one depending on the nature of the data 
point. At the Limit, this form could take 24 functions corresponding to 
each hour, and replicate the classical aggregation of hourly data across 
days. 

The model also included an intercept term. Of the above functions, the 
most useful were the first two; 6 daily and 2 weekly harmonics were 
sufficient for additive sinusoids, while (3,2) and (2,2) harmonics were used 
for the (daily, weekly) and (daily, seasonal), respectively. Seasonal 
harmonics were not used, since seasonal variation was effectively captured 
by the weatherdependent component. 

Weatherdependent load behavior was also expressed as a weighted sum of 
predictor functions, i.e. 

Y h )  = g O,(n) 

where flj are householddependent coefficients to be determined. However, 
the choice of the predictors 8, was complicated by the fact that different 
dwellings may have widely varying responses to changes in weather 
conditions - due, for instance, to differences in exposure and insulation. 

Two methods of choosing the weatherdependent predictors were considered. 
The first involves a detailed thermodynamic household model with non- 
linear thermostatic control and saturation characteristics. While this model is 
intuitively justifiable and derives from basic principles, it also causes certain 
difficulties in practice when model parameters must be estimated for 
hundreds of households. The second method, approximating the first. is 
easier to implement and yields satisfactory results. 

In this approach, a dwelling is represented as a space enclosed in a shell that 
protects it from direct contact with the environment. Desirable ambient 
conditions are maintained within the dwelling by suitable space conditioning 
devices such as space heaters or air conditioners. The shell has thermal 
inertia and heat transfer characteristics. The energy consumption of the 
space conditioning device is proportional to the rate of heat transfer through 
the shell, provided that this rate remains between a comfort setpoint and a 
saturation level. Although different sections of the shell ("cells") have 
different thermal characteristics, experience has shown that an aggregate 
model lumping the shell into a single effective thermal capacitance yields 
satisfactory results. 

Since ambient conditions within the dwelling are kept eonstant, the heat 
transfer effected by the space conditioning deviee is a function of the shell 
temperature T,(.). which is in turn driven by outside temperature To(.), i.e. 

d 
7 = -TWO) + T.0)  

where T is a time constant depending, among other factors, on exposure. 

8 
.5 

9 

Frequency 

Figure 3 2  @) Amplitude spectrum of load exhibiting strong weekly 
periodicity. 

size, and iqsulation. Note that T is unknown for any given house, and indeed 
may vary depending on whether the spacc is heated or cooled; thus, it must 
be estimated. Assume for the sake of argument that 8, is a p r + i c t ~  for the 
weatherdependent component of the load due to cooling. Then, clearly 
e,(n) = 0 if T,(n) c T,, a wmfort setpoint. Likewise. 8,(n) is constant (at 
maximum capacity) if T,(n) > T, , a saturation temperature. Since T, and T, 
are also householddependent, they must be estimated for each customer. 

Assuming that energy consumption is proportional to T, when the dewice is 
on but not saturated, the dependence of 8, on the outside temperature To is 
as illustrated in Figures 3 3  and 3.4. The latter shows the different respoases 
of the cooling load to an actual heat wave in Boston for different values of 7. 

As expected, the system shuts off when the temperature drm below T, , and 
saturates when it rises above T,. Moreover. the figure graphically shows the 
heat build-up phenomenon: although the peak temperatke on successive 
days may not increase, the peak load in the longer time constant responses 
continues to increase for some time, due to the accumulation of heat in the 
house, the ground, ete. 

- I  I 

Figure 3 3  Dynamic model for load component due to cooling, illustrating 
response to outside temperature To, householddependent time eonstant T, 

gain (proportionality constant) p, unnfort setpoint T,, and saturation 
temperature T, . 

Fastest Response 

Figure 3.4 Dynamic responses to outside tempc&ture for various valued of 
the time constant T, during a Boston-area heat wave lasting two weeks. 
Fastest response c o r r v d s  to smallest value 6f T. 
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S i a r  argumcnts can be made for the heating load, so that (indexing with j 
the heating and cmling components) the weatherdependent load component 
is represented as 

I 

A parametric model has thus been formulated including weatherdependent 
and weather-independent load components; it is neceSSary to estimate the 
values of its parameters for each household. 

c. pvunaaEstioutloa 

The parameter estimation problem is to fit the whole-house load model 

where the dependence of 0, on its parameters T,, T,. and T,, is nonlinear. 
Thus, while the coefficients a, and p, may be estimated by linear regression, 
the parameters of 0, cannot. For any given value of these parameters, 
however. linear regression may be used to yield estimates of the coefficients. 
Thus. the following algorithm is used: 
0 An outer "optimization loop" chooses the ~ f ) ,  T$), and T$). 

For each choice, the Of)(.) are computed exactly. 
The gains a,@) and p,@) are computed by regression. 

0 If this choice does not r d t  in a minimal residual sum-of-squares, the 
procedure is repeated with k - k +l. 

In this algorithm, the predictors are thus not constant, but functions of 
unknown parameters, which are themselves optimiWi to yield the best fit. 
Note that since the number of parameters is fixed, the residual sum-of- 
squares is a sufficient goodness-of-fit criterion. 

Some simplification is possible, with an increase in computation speed - an 
important factor since each evaluation of the objective function involves 
solving a linear regression Over as many as 8760 points. For example, heating 
and cmling parameters influence the load at different times, and although 
such house characteristics as insulation do not change from season to season, 
lifestyle patterns do change enough to warrant the independent estimation of 
these parameters. Moreover. it was found in the test data that T,, could be 
ignored, since temperatures seldom reached valucs extreme enough to drive 
the equipment into saturation. Since the number of function evaluations is a 
nonlinear function of the number of parameters, these actions r d t e d  in 
significant computational savings. 

Weatherdependent load commonly changes qualitatively throughout the 
day, reflecting the lifestyle of the household members, and resulting in some 
interaction between behavioral factors and thc weather. Rather than 
estimating separate weatherdependent predictor parameters at different 
times, which would be computationally expensive, only the gains 0, were 
allowed to vary: three periods were used, covering 1-8.9-17, and 1824 hours. 

Finally, the results of the parameter estimation process are tested to check 
whether or not a weatherdependent component truly exists: simple 
hypothesis tests are performed at the beginning and the end of the process - 
for both cooling and heating load components. At the beginning, the 
estimated gains are analyzed given the initial guesses for time constant and 
temperature setpoints; if the gains are statistically insignificant or nonphysical 
(e.g. negative) for all periods of the day, it is concluded that the weather 
component in question does not exist. Similarly, gains as well as time 
constants and temperature setpoint estimates are tested at the end of the 
estimation process: once again, statistically insignificant gains or nonphysical 
values for the estimated time constants. temperature setpoints. or gains, 
suggest that the corresponding weather components are not present. 

Iv. RESULTS 

The technique discussed here has been applied to residential whole-house 
data from three service areas. Some typical examples. involving customers of 
the Boston Edison Company. are discussed in this section. 

Figure 4.1 shows a very regular pattern throughout the year, with little 
deviation from a regular daily periodicity. Tests suggest that no weathcr- 
dependent load component is present, which is confimed by the survey data. 
Note that the missing data in early September do not prevent the process 

from providing a reasonable reconstruction. This segment, as well as one in 
late May and early June, were flagged by the Utility as invalid data and 
were therefore ignored in the parameter estimation process. The seasonal 
variation in the peaks of the daily curves is captured well. Finally, observe 
that reconstruction is poor on Christmas Eve, where the load deviates 
significantly from the usual pattern. Such holiday effects can be anticipated. 

An example of strong weekly periodicity appears in Figure 4 2  (a). The 
atypical "quiet periods" are automatically detected and excluded during 
parameter atimation. The weekly variation is especially clear in Figure 4 2  
(b), where daily averages for weekdays and weekends are given for selected 
months; note that the reconstruction captures this variation extremely well. 
Once again, no weatherdependent load component is present. 

The survey indicates that the customer in Figure 4 3  (a) has electric space 
heating as well as a room air conditioner, and the parameter estimation 
algorithm detects the presence of both components - as can be seen in 
Figure 4 3  (b), where the weatherdependent and weather-independent 
components are each plotted. The end of February is noteworthy: a warm 
spell occurred, and the customer appears to have turned off the heater, 
resulting in a slight Overestimation of the weatherdependent load. There 
was a heat wave in July, as is clear in the increased load during that period; 
the air conditioner was apparently tumed off late at night, and that effect is 
captured well by the three-way split of the gains, as discussed earlier. 

Although the analysis was directed to individual residential customers, the 
resulting algorithm can also be applied, for instance, to total system load - 
including commercial and industrial loads. This approach may be used to 
disaggregate weatherdependent and weather-independent components of the 
load, as can be seen in Figure 4.4. The reconstruction for the entire year is 
excellent, with the exception of some holidays; no special effort was made to 
reflect holiday behavior. 

For a data set of 125 households, the coefficient of determination (R2) 
ranged from a low of 18.6 to a high of 868. As might be expected, the 
poorest performance was for irregular loads lacking weatherdependent 
components. More systematic loads, i.e. those with significant periodicities 
and weather dependence, performed best. 

CONCLUSION 

A two-tiered procedure has been formulated for modeling and analyzing 
residential end-use load shapes. At the first level, the whole-house data is 
modeled as the sum of a weather-independent (lifestyle) component, and a 
weatherdependent component. The former is expressed as a weighted sum 
of orthogonal functions (sinusoids, boxcars, and their products), and the 
latter as a weighted dynamic response to outside temperature, parametrized 
by certain householddependent quantities (time constant, comfort setpoint, 
saturation temperature). 

The algorithm has been applied to several data sets, and results indicate good 
fit with lowader models: hourly data for a year (8760 observations) are 
compressed into approximately sixty parameters, and successfully 
disaggregated into weatherdependent and weather-independent components. 
Moreover. the parameter set extracted from the data correlates well with 
household characteristics (second level), providing an effective method for 
end-use load shape estimation from wholc-house metered data. 
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