
Real-Time Modeling of Power Networks 

The use of large digital computers in control centers  has made 
it  possible to track the changing conditions in the power system 
with  a mathematical model in  the computer. This real-time model 
can be used to assess the security of the present system as well as 
to check out possible control strategies. In this paper the various 
steps in constructing the  model from the real-time measurements 
are described. These  steps include the determination of the net- 
work topology, the estimation of the network state, and  the 
approximate modeling of the unobservable (external) network. This 
paper also  discusses the checks  for observability and bad measure- 
ments, and the calculation of bus load  forecast  factors and gener- 
ator penalty factors. 

I .  INTRODUCTION 

The securityof  a  power system  can bedefined as its ability 
to withstand  contingencies. It is relativelyeasyto check the 
measurement  data for  present  violations  of  security limits, 
but it takes  several analytical steps to determine  the effects 
on  the  present system of  a particular  contingency. Such 
analysis for  the  off-line  study  of steady-state  and dynamic 
effects of  contingencies became commonplace with  the 
advent of the  digital  computer. The computerization  of  the 
control  center made it feasible to implement such off-line 
analysis in  the  on-line  environment. Since on-line analysis 
must  be continually  updated,  the  computation  time 
required  for  dynamic  contingency analysis is too  long  to be 
useful  for  operations. However,  steady-state  analysis for  a 
large number  of  contingencies can  be completed  quickly 
enough to provide  timely  alert messages to the  operator. 

The contingency analysis  has to be done on  a  model  of 
the  power system.  For off-line studies, this  model is spec. 
ified by the user through  the  input data. For on-line  con- 
tingency analysis, the  model  must  reflect  the  present  con- 
ditions  of  the  power system.  Thus the  model must  be built 
from  the real-time measurements beforecontingencies can 
be  analyzed.  This building  of  the real-time  model of the 
power  network is the  subject  of  this paper. Although  on- 
line  contingency analysis was the  major  motivation to 
develop  methods  for  real-time  modeling,  there are  several 
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other uses of  the  real-time  model. It can  be  used for  better 
monitoring of  the system  by detecting  erroneous as well as 
estimating  the  incorrect  or  missing measurements. It can 
provide  updated  penalty  factors to  the  economic  dispatch 
program  for  more  economic  operation. It can  be  used to 
study  possible control strategies like switching  operations, 
volt-VAR coordination,  economic  operation within secu- 
rity constraints, and  many others. 

The power system model  needed  for  contingency anal- 
ysis is a solved power  network  described in terms of  buses 
and  branches.  The model is built  in  two parts, one  repre- 
senting  the  internal system from  which  the  control  center 
receives telemetered data  and the  other  representing  the 
external system which consists of the rest of  the  intercon- 
nected system.  Each part is built  in  two steps, the first being 
the  determination of the  network  topology and the second 
being  the  solution  for  the  complex bus  voltages (or states) 
of the  network. The  step by step  process is  shown in 
Fig. 1. 

These programs are supported  by a database that  con- 
tains the  description  of  the  network in terms of its param- 
eters  such as branch impedances and  connectivity. These 
data  are combined  with real-time measurements to con- 
struct the real-time  model. The topology processor picks 
outthestatusof  circuit breakersand  switchesfrom  the real- 
time data  and, using  the  connectivity data from the data- 
base, determines  the  present  network  topology. This topol- 
ogy and all the  other measurements  are then used by  the 
state estimator to solve for  the bus  voltages.  Since the avail- 
ability of real-time measurements  can  change  because of 
failures in the  telemetering  equipment, an observability 
check is usually made before  the state estimator  solution 
is executed.  Those parts  of  the  network  from  which mea- 
surements  are normally not received are  always unobserv- 
able.  The observability  check  only examines the  normally 
observable portions and identifies  those buses that may 
have  become temporarily  unobservable. These  buses  can 
then be madeobservable  by  adding pseudo-measurements 
or  taken  out of the state estimator  calculation and lumped 
with the  external  model. 

After  the state estimator has solved for  the observable 
network, a check for bad  measurements is  made. If bad 
data  are detected and identified,  they can  be removed and 
the  estimation  updated. The unobservable portion of the 
interconnected  network is then  modeled. This portion can 
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F i i  1. Steps for  building real-time model. 
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be quite large  and the  only reason to model it is to obtain 
accurate  results for  the  subsequent  contingency analysis 
orother studyfunctions. Since the  remote  partsof the inter- 
connected  network have  very little effect on  the  internal 
system, a  reduced  model may be adequate. Even for  a 
reduced model, certain assumptions  have to be  made about 
the status  of equipment  and  loading levels to obtain  a solved 
external  model. 

The external  model is needed mainlyfor  the contingency 
analysis and i s  thus  calculated  just  before the contingency 
analysis is done. A typical period of  execution  for these two 
functions is between 15 and 30 min  in modern control cen- 
ters. The transmission loss penalty factors for generators 
and tielines are  also updated from  the real-time  model  and 
the above periodicity is usually  more  than adequate for  this 
calculation. The real-time  model can also  be  used for auto- 
matic or  operator-initiated  determination  of control strat- 
egies. 

The  state estimator  constructs  the  real-time  model of  the 
internal system.  Since the state estimator is  a filter  for  the 
real-time measurements, the  resulting  model can  be useful 
to the  operator as a  check  for  missing  or  suspicious data. 
For this reason, the  internal  model is usually  updated  more 
frequentlythan  theexternal  model  and  atypical  periodicity 
for  the  network  topology  and state estimator  calculations 
is 5 to 10 min. Since the state estimator calculates the bus 
loads  every few  minutes, it i s  possible to track the rela- 
tionship  of each load to the system load over time. These 
factors  can  be  used to forecast  bus  loads when  they are 
needed as pseudo-measurements or in other  study  func- 
tions. 

Each of  the  functions  shown in Fig. 1 are  discussed in the 
following sections.  Section I I  describes the  network  topol- 
ogy processor and Section Ill the state estimator. Section 
IV is on observabilityand Section V is  on bad data detection 
and identification.  Calculation  of  bus  load forecast factors 
is discussed in Section VI, the  modeling  of  the  external sys- 
tem in Section VII, and  the  calculation  of  penalty  factors is 
described in Section VIII. Section IX presents  some of  the 
other  considerations such as software design, implemen- 
tation, database, and  man-machine  interface  which  play 
major roles in  the efficiency  and utility  of these functions. 
Some conclusions  and references  are presented at theend 
of the paper. 

Schweppe and  Handschin [I] had reviewed  the state of 
the art in state estimation in 1974 and  this  present  review 
explores the advances  since then. Since much  of  the 
advancement has been in the  widespread  implementation 

Penalty 
Factors 

of state estimators as well as in  the new  development of 
algorithms,  this paper  describes not only  the state esti- 
mator but also the associated functions  that are needed to 
completely  construct  the  real-time  model. This review is 
largely  directed to  the present  general  practice in today's 
control centers instead of a  complete survey of  the  pub- 
lished literature. 

11. NETWORK TOPOLOGY PROCESSOR 

The function of  the  network  topology processor is to 
determine  the  present  topology of  the  network  from  the 
telemetered status of  circuit breakers.  The  database 
describes the  networkconnectivity  in  termsof bus-sections 
and  circuit breakers. All equipment, such as generators, 
load feeders, shunt reactors, transformers,  transmission 
lines,  etc.,  are connected to bus-sections.  Bus-sections 
within one  voltage  level at a  substation may  be connected 
together by circuit breakers. A simple  power system with 
this  level of detail is shown in Fig. 2 and i ts  associated  data 

Substation 1 Substation 2 

I Closed Orcult Breaker 

0 Open Clrcult Breaker 

LD2 

Substatlon 3 

Fig. 2. Bus sectionkircuit breaker network model. 

are shown in Table 1. The circuit breaker  status  data shown 
in the  table are not part  of the base data but are telemetered 
and  are subject to change. 

These  status  data  are  used to  determine the present 
topology  described in terms of buses and branches. For the 
circuit breaker  status in Table 1, the  power system of Fig. 
2 can be  represented as Fig. 3 in its bus-branch  form. As 
the status of  circuit breakers  changes in real  time, the  bus- 
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Table 1 Network Topology Input Arrays 

Bus Sections Circuit Breakers 

Substation Equipment From  To 
Number No. Type  Ident.  No.  6. Sec.  6. S e c :  Status 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 

2  13 
14 
15 
16 

17 
18 

3  19 
20 
21 
22 

gen.  unit 
connection 
transformer 
connection 
connection 
transformer 
line 
connection 
line 
shunt 

connection 
connection 
connection 
line 
line 
load 

connection 
connection 
line 
line 
load 
load 

cu1 

TR1 

TR1 
LT1 

LT2 
SHI 

LTl 
LT3 
LD1 

LT2 
LT3 
LD2 
LD3 

1 1 
2  2 
3  4 
4  6 
5  7 
6 4 
7  8 
8 9 
9 10 

10  12 
11 14 
12  13 
13 11 
14 11 
15 12 

16  17 
17  19 
18 20 
19 17 
20 21 
21 22 

2 
3 
4 
6 
5 
8 
9 
5 
8 

15 
11 
16 
12 
11 
13 

19 
20 
18 
21 
22 
18 

closed 
closed 
closed 
closed 
open 
closed 
closed 
open 
closed 

closed 
closed 
closed 
closed 
closed 
open 

open 
closed 
closed 
open 
closed 
closed 

branch  topology is expected to change, and the  network 
topology processor must  determine  the  new  topology 

LD1 

TRl 

I 3  + 
LD2 + LD3 

Fig. 3. Budbranch  network  model. 

wheneverthereisachange.Thusthisprogramneedstorun 
only  if there is a status  change.  For no status  change, this 
program can be  skipped in a  periodic  cycle as the  topology 
does not change. 

The output  of  the  network  topology processor is the tra- 
ditional data that  describe  a  bus-branch  oriented  network. 
Thus  each of the buses must  be identified together with  the 
generation,  loads, and  shunts at these  buses.  Also the  con- 
nectivity  between  the buses due to  the transmission  lines 
and transformers has to be described. In addition,  the 
topology processor must  identify  network islands  and dis- 
card  those  that are not energized, that is, have no gener- 
ation.  Isolated buses and branches  are trivial de-energized 
islands and will be  discarded  by  this process. 

There  are  several methods to convert  bus-section-circuit 
breaker topology  into bus-branch  topology, some includ- 
ingthe useof  logictablesand  incidence matrices.  However, 
only  one basic method [2], [3] using  a  tree search algorithm 
has been widely used in practice  and is briefly  described 
here. It consists of three  sequential steps described in the 
following subsectons. 

A. Substation Configuration 

In the  first step, the bus-sections at  each substation  volt- 
age level are  processed to determine  if  they are connected 
together  by closed circult breakers.  At the beginning  of  the 
step,  each bus-section is considered  a  potential separate 
bus. At  the  end  of  this  tree search  process, all tils-sections 
connected by closed circuit breakers  become part of  one 
bus.  Thus  each  separate  bus in the  topology is uniqirely 
identified in this step together with its constituent bus-sec- 
tions. 

It is not convenient to sequentially  number  the buses in 
this step as some of  them may  be found  to be  de-energized 
in  the next  steps. It is sufficient for  them to be uniquely 
identified.  When  initializing the program,  every  bus-sec- 
tion and circtiit breaker has to be  processed in this step. In 
the  tracking mode,  however, only those' substations in 
which  circuit breaker status  changes  have taken place need 
to be  processed.  This  step is usually very  fasf as the  number 
of status  changes during each cycle is normally quite small. 

B. Network  Configuration 

In this step, all the  energized  network islands  are iden- 
tified. The tree search  process  used here is identical to that 
in  the  first step. Instead  of bus-sections being  combined  by 
closed circuit breakers into buses, the buses  are combined 
by branches into islands. Starting from a  generator bus 
guarantees that  the  island is energized. As buses  are added 
to the island, they can be  sequentially  numbered. Also the 
number  of  connections to a bus is counted  for use in  opti- 
mal ordering later. When no more buses  can  be found  to 
be added to the  first island, a search is made for an unpro- 
cessed generator bus. If  one is found, it is used to start the 
search for the next island. Otherwise,  this step is completed 
and all energized islands identified. 

BOSE AND  CLEMENTS: MODELING OF POWER  NETWORKS 1609 



It should be pointed  out  that  the  optimal  ordering  of  the 
buses  can  be done at this stage as the  number  of  connec- 
tions to each bus is already known. This  has the advantage 
of  carrying  forward to subsequent calculations buses that 
are numbered  optimally.  Otherwise,  the later calculations 
have to keep track  of  the  mapping  between  sequential 
numbers and optimal numbers, a  more  common  practice. 

C. Equipment-Bus Tables 

Inthisfinalstep,alltheequipmentconnectedtothebuses 
is tabulated. Since the  equipment  connected to each  bus 
section is known  and  the bus-sections constituting  a  bus 
are known  from  the  first step, theconnectivityof theequip 
ment to the buses  can  be  established.  The  tables produced 
should be structured  for easy  use by subsequent  programs. 
For  example,  each equipment  type can  be  processed into 
separate  tables to accommodate generator  control, trans- 
former  control,  or  shunt  switching  algorithms in later pro- 
grams.  Generator  and load buses  are identified in this step 
and  slack  buses  may  be identified for each island. 

If there is a status  change, the  three steps outlined above 
are executed to obtain  the new topology. The new  topology 
bas all new bus numbers  which have no relation to the  old 
numqers. The solution matrices  have to be recorded  and 
refactorized  for all subsequent programs such as the state 
estimator, Also, the  iterative  solutions have to be  started 
from a flat start. 

Many times,  however, a status  change  may  cause  very 
little  or  no change in topology. For  small  changes, there are 
ways to obtain  network  solutions  without  reordering  and 
refactorization  of  the  matrices  and by starting  the  iterative 
process from  the previous  solution. This is, of course, com- 
putationally  much faster but  the change in topology  must 
be  tracked, that is, the  new  topology must  be compared to 
the  topologyof  the  previous cycle. To do this, Prais and Bose 
[4] have proposed a bus-numbering scheme that  instead of 
renumbering all the buses,  gives new  numbers to newly 
formed buses and deletes those bus numbers  that  areelim- 
inated.  Admittedly, such  changes will move the  ordering 
away from  optimal  but  for small  changes in topology  this 
does not affect the  efficiency very much.  Of course,  large 
changes or an accumulation of small  changes  over time  will 
require  optimal  renumbering  of the buses.  However, a 
tracking  topology processor is  not yet in common use. 

Ill. STATE ESTIMATION 

The  static  state of an electric  power  network is described 
by the vector  of  bus  voltage magnitudes and  angles.  An esti- 
mate of  the state  can  be computed.from system  data con- 
sisting of network  structural  information,  transmission sys- 
tem parameter  values,  and a  sufficient set of  power  and 
voltage  measurements.  For anetworkwith N buses, the state 
vector contains N bus  voltage magnitudes  and N - 1 bus 
voltage  angles. One  of  the buses is chosen as the  reference 
bus and is assigned a  voltage angle  of zero degrees.  The 
state  vector, denoted x, thus has dimension n = 2N - 1. 
Computation  of  the state  estimate provides  complete real- 
time  information  on  the  current  condition of the  electric 
power  network. 

If there are m measurements, then these  measurements 
can bewritten as an mdimensional  vectorz,  which is related 

to the state  vector through  the measurement equation 

z = h(x) + w (1) 

whereh(x) is the  nonlinearvectorfunction  relatingthe mea- 
surementvectortothestatevector,andwisavectorofmea- 
surement  errors. 

The power system  state estimation  problem was first  for- 
mulated as  an unconstrained least  squares problem. Equal- 
ity constraints, such as those  imposed by zero-injection 
buses in  the  network were  treated as very  accurate mea- 
surements rather  than as equality  constraints. The uncon- 
strained least  squares formulation is described first; this is 
followed by the  constrained  formulation; and then by the 
decoupled  formulation. 

A. The Unconstrained  Weighted Least  Squares 
Formulation 

In this  formulation, the state estimate is computed as a 
least  squares solution to  the overdetermined set of equa- 
tions  obtained from  the measurements.  The  least  squares 
estimate of x, denoted i ,  minimizes the weighted least 
squares function 

/(X) = (1/2) [ Z  - h(x)] ‘R-’[z - h(x)] (2) 

where R is a diagonal  matrix. The diagonal  entries  of R, uii 
are often chosen as the measurement error variances. How- 
ever, perfect  (zero  error variance)  measurements cannot be 
handled in this manner and  must be treated as very  accu- 
rate  measurement rather  than as equality  constraints. 

Several methods have been  proposed  for  solving  the 
above  least  squares problem.Thefirst  solution  method  pro- 
posed for  power  network state estimation [ I ]  i s  based on 
the so-called normal  equation. The normal  equation is  
derivedfromthenecessaryconditionforxtobeaminimum 
of ](x), namely, that 

where H( i )  is  the measurement Jacobian  matrix 

Since (3) is  nonlinear, its solution generally requires  the 
application  of an iterative method. The  most commonly 
employed  method is that of Newton,  which is based on the 
following linear  approximation  of h(i i+ ’ ) :  

//(ii+’) = h@) + H(ii)  ~ i + ’ .  (5) 

If a furtheF approximation is  made  by  assuming that 
H ( i i + l )  = H(i9 then  the  following  iterative sequence  of 
equations results: 

qfi Mi+‘ = H(ii)TR-’[z - h(ii)] (6) 

zi+l = i i  + Mi+’ (7) 

where 

C(99 = H(ii)‘R-’H(ii). (8) 

The iterations are initialized  either at flat-start conditions 
or at the  previous state  estimate. 

Equation (6) is  referred to as the  normal  equation.  Note 
that  a  unique  solution  for A i i + ’  can  be obtained from (6) 
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only  if C(I’) is  nonsingular. The  necessary condition  for 
CU’) to be nonsingular is that MIi) be rank n, i.e., full rank. 
When HU‘) has rank n, the  network is said to be  observable. 
For the estimate to be  reliable, the number of measure- 
ments  needs to be  greater than n, i.e., there  should be 
redundancy in the measurements to counteract the errors 
in the measurements. Network  observability  and mea- 
surement redundancy i s  addressed in Section IV. 

Equation (6) is  similar in structure to the  equation 
encountered in the  Newton  power  flow. In particular, 
C(Ii) is a  symmetric  positive-definite  matrix  that is slightly 
less  sparse than  the  Jacobian in the  Newton  power  flow. An 
efficient  method  for  solving (6) is to  perform  ordered  tri- 
angular decomposition on C(I‘) and  then solve for A I i + ’  
via forward and backward  solution. 

The triangular  decomposition  of C(I‘) is  written as 

fC( I ’ ) fT  = U’DU (9) 

where f is  a  permutation  matrix, U is an upper unit  tri- 
angular matrix (U, = 0 for i > j ,  Uji = I),  and D is a  diagonal 
matrix. As in the  Newton  power  flow  problem,  the  Tinney 
I1 ordering scheme has been found  to  perform  well  in main- 
taining sparsity in U. As pointed  out in the  previous section, 
this  ordering can  be donewhen  forming  the  network  topol- 
ogy, but  in general  practice it is often  done  when  solving 
the  normal  equation. 

Although  the above method is utilized in most of  the state 
estimators in the  field today, it can  be ill-conditioned  in cer- 
tain situations; consequently, researchers  have investi- 
gated other  solution  methods  with  better  numerical  prop- 
erties.  Gu eta/. [5]  proposed  using  the  method of Peters  and 
Wilkinson, the  first step of  which is to compute  factor- 
ization  of H 

f l H ( I ’ ) f *  = lD0 (1 0) 

where f l  and f2 are permutation matrices, l is an m X n 
lower unit trapezoidal  matrix (Iij = 0 for i < j ,  0;; = I),  
isa diagonal  matrix,  and 0 is  an n X n upper unit triangular 
matrix. 

The rows  of H are ordered as the  factorization i s  per- 
formed. Peters  and Wilkinson used completed  pivoting  for 
nonsparse cases, but for sparse  matrices a  good  choice  for 
the  pivot  element  would  be a nonzero  element  for  which 
the  product  of  the  number  of  nonzero  row  elements  and 
nonzero  column  elements is minimum. In the  method  of 
Peters and  Wilkinson,  rather  than  solving  directly  for 
A i i + ’ ,  a new vector  variable 

is introduced.  When  this is substituted into (5) one  obtains 

Equation (12) is another  normal  equation  but, because 
1 is  a unit lower  trapezoidal  matrix,  the  equation  tends to 
be better  numerically  conditioned  than (6). The  second  step 
in the  method  of Peters and  Wilkinson is to factor 
LTR-’I and solve for Api+’ by  forward  and  backward  solu- 
tion. The third step is to compute Ai“’ from (11) via  back- 
ward  substitution. 

The method  requires  additional  computations, namely, 
the  factorization  of /+(I;); however, it offers  the  ability of 
tradeoff  between speed and stability in the  calculation  of 
the state  estimate. Gu  eta/.  report  substantial  improvement 

in numerical  roundoff  error  for  the  method  of Peters  and 
Wilkinson  when  compared  with  the  normal  equations  tech- 
nique. 

Solution  of  the  power system  state estimation  problem 
using  orthogonal  transformation  methods is a  third tech- 
nique  that has been  investigated [6]-[8]. An orthogonal 
transformation  matrix T i s  a square matrix such that 

T ~ T  = I. (13) 

Suppose  an orthogonal  transformation  matrix can  be found 
such that 

r 7  

Tf i ( i ‘ )  = 

where 

fi(Ii) = H(IjR-’n. (1 5) 

Solution  of  the  nonlinear least  squares problem  by New- 
ton‘s method is equivalent to solving  a sequence of  linear 
least  squares problems of  the  form 

] ( A i ’ + ’ )  = (1/2) [Z - H(I i )Ai ’c ’ ] rR- ’  

[z - H ( t j A i ’ + ‘ ]  

which may be rewritten as 

](Mi+’) = (1/2) [Tz - TH( I ‘ )Ai ‘+ ’ ITR- ‘  

* [Tz - TH( I ’ )Ai ’+ ’ ] .  (1 7)  

Let 

(18) 

Then (17) may be written as 

]W+‘) = (1/2) [V - U A ~ ’ + ’ ] ’  [V - U A ~ ‘ + ’ I  + ere. (19) 

Clearly, the value of AI”’ that  minimizes](Ai”’) satisfies 
the  equation 

u”+l’= Y. (20) 

U can  be computed  either by processing  columns  of f i  
(Householder’s  rotations)  or  by  processing  rows of fi  (Giv- 
ens rotations). The  same operations  applied to z allow  the 
computation  of w. Equation (20) is  then  employed to solve 
for Ai” ’ .  Although  orthogonal  transformation  methods 
have good  numerical  properties,  they are usually not as effi- 
cient as the  normal  equations  algorithm.  Orthogonal trans- 
formation  methods have been  widely  applied to general 
least  squares problems and  are beginning to be used in con- 
trol centers.  The first papers proposing  their  application to 
power system  state estimation  were  by Simoes-Costa and 
Quintana [6], m. 

A  hybrid  method  combining aspects of the  normal equa- 
tions  method  and  the  orthogonal  transformation  method 
has also been  described [9]. In this  method, an orthogonal 
transformation  method is used tocompute U. Since Uis the 
upper  triangular  factor  of C(f‘), then (6) may  be written as 

UTUAi’+’ = H( i iTR- ’ [ z  - h ( I j ] .  (21 1 

Equation (21) can then be solved  by forward and  backward 
substitution as in the  normal  equations approach. In this 
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method, the  ordering of the equations  can  be done  by the 
Tinney I I  method so that U has  exactly the same  sparse 
structure as in the normal  equations  algorithm. 

B. The Constrained  Weighted  Least Squares Formulation 

Buses with neither load nor generation  are referred to as 
zero injection buses.  There is, in effect, a perfect mea- 
surement of bus injection available at such  buses. It has 
been noted  that  the  unconstrained least  squares formu- 
lation cannot treat these perfect measurements properly. 
Although earlier implementations  modeled  equality con- 
straints as accurate  measurements by setting the corre- 
sponding elements of  the R matrix to small  values, this may 
lead to  ill-conditioning  and nonconvergence of the state 
estimate under certain circumstances.  Aschmoneit eta/. [IO] 
were the  first to propose  inclusion  of  equality constraints 
into  the least  squares formulation and this  method  of han- 
dlingzero-injection buses iscommon today.  Suppose there 
are p constraints imposed by zero-injection buses in  the 
network and let g ( x )  to be  p-dimensional vector of  con- 
straint equations, then  the constrained least  squares for- 
mulation may be expressed as 
minimize 

) ( X )  = (112) [Z - h ( x ) ] ’ R - ’ [ z  - h ( x ) ]  ( 2 2 )  

subject to 

g ( x )  = 0. (23) 

This  constrained minimization  problem may  be  solved by 
the  method of Lagrange multipliers. The  Lagrangian L ( x )  i s  
formed as 

L ( x )  = (1/2) [z - h ( x ) ] ’ R - ’ [ z  - h ( x ) ]  + L r g ( x )  (24) 

where 1 is the Lagrange multiplier vector. 
The  necessary conditions  for  the  solution  of  the con- 

strained problem are then given by the  following two equa- 
tions: 

and 

= -&i) = 0 

where G ( i )  i s  the  constraint  equation Jacobian matrix 

a m  
G ( x )  = . (27) 

Solution of (25) and (26) by Newton’s method leads to the 
following system of equations to be  solved at  each iteration: 

X = i  

where 

Az’ = z - h(2’). (29) 

As in the case of  the  normal equation, the above  equations 
can  be  solved by  ordered triangular factorization.  The matrix 
on the left-hand side of (28) is  not positive-definite however, 

consequently, the  ordering  algorithm must take this into 
account by  testing  the value of  potential  pivot elements. 

Another method  for solving constrained  least  squares 
problems is  the sparse tableau method,  also known as 
Hachtel’s  method. In this technique, the  problem is 
described by a larger albeit sparser  set of equations.  Gjels- 
vik, Aam, and Holten [I l l  have applied this  method to power 
system  state estimation. In this technique, the  weighted 
least  squares  cost function is  written as 

where 
r = z - h ( x ) .  

Equation (31) i s  treated as an equality constraint. The 
Lagrangian for  this  problem may then be written as 

L ( x )  = (1/2) rTR-’r - 1’g(x)  - yT[r - z + h ( x ) ]  (32) 

and the  solution  for  the least  squares  estimate  must  satisfy 
the  following necessary conditions: 

= r + z - h ( i )  = 0. 

(33) 

(35) 

aY l x = i  

Application  of Newton’s method  to  the above  equations 
results in the  following system of n + m + p equations to 
be solved at each iteration: 

L“ 0 ““‘1 I*;” 1 = pq . (37) 

H(ii)T GU3T 0 Ail + 1 

Gjelsvik et a/. report  good  performance  with respect to 
both efficiencyand  numerical stabilityof thesparsetableau 
method. Since the coefficient  matrix is not positive-defi- 
nite, ordering  of  the  equations generally requires a numer- 
ical  test for  the candidate pivot elements. Although  the 
number of  equations is much larger than  for  the normal 
equations  method, thenumber offloating-pointoperations 
required  for  solution may actually be fewer in certain cases. 

One may  also extend  orthogonal  transformation  meth- 
ods as well as the  method  of Peters  and Wilkinson to  treat 
constrained  least  squares problems. 

C. Fast  Decoupled  Solution  Algorithms 

As with  the  Newton load flow, fast decoupled  algorithms 
for power  system  state estimation have  been  developed  and 
implemented. These methods are  based on  the strong  cou- 
pling between  active power flows and  bus voltage angles 
(P-8 coupling)  and  between reactive power  flows and bus 
voltage magnitudes (Q-V  coupling)  compared with  the 
P-Vand Q-0 couplings. There  are  many possible variations 
of decoupled algorithms, but  the most  successful of these 
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seem to be those that are  very similar to  the fast decoupled 
load  flow  algorithm  that has evolved  over a period  of time. 
To begin  with, the state vector is partitioned  into bus volt- 
age  angles and  bus voltage magnitudes 

x = [;I. 
The  measurement vector is transformed  by dividing real 
and reactive power measurements by the bus voltage mag- 
nitude at the measured  bus.  The  measurements  are denoted 

Z’ = [t’, i’, u’, k’, e’] (39) 

where t contains active lineflow measurements divided  by 
the bus voltage on  the  “from” side of the measurement, i 
contains active bus injection measurements divided  by  the 
bus  voltage, u contains reactive lineflow measurements 
divided  by  the bus voltage on  the  “from” side of  the mea- 
surement, kcontains reactive bus injection measurements 
divided  by  the bus  voltage, and e contains bus voltage mag- 
nitude measurements. z i s  partitioned  into active and  reac- 
tive measurements 

= = [::I = [::;)I + L::1 (40) 

where 

zp = [t’, i’]  (41 ) 

and 
ZQ = [uT, k’, e’]. 

The  measurement  Jacobian matrix  and the  information 
matrix are written  in  partitioned  form as 

and 

There  are two variations of fast decoupled  algorithms  that 
have been  proposed [12]-[14]. In  the so-called algorithm 
decoupled estimator, the right-hand  sideof (6) is computed 
exactly, but  the nondiagonal  blocks of C(x‘) matrix are  set 
to zero while  the diagonal  blocks are approximated  by  their 
flat-start values. With these  approximations, (6) is  replaced 
by  the  following decoupled pair of equations: 

CpsABi+’ = [H;@(H&]R-’Az’ (45) 

and 

CpBAV”’ = [H;vlH&v]R-lAz’. (46) 

In the second  version or  the  model decoupled  algorithm, 
the  right-hand side of (6) is also approximated  by  setting  the 
off-diagonal blocks  of H to zero. When this approximation 
is made the estimation  equations become 

CpeAB’+’ = HLoR,’Az’, (47) 

and 

C QV AVi+’ = H&R~’AZ& 

where 

Azl, = zp - hp(X’) (49) 

and 

AZh = ZQ - h ~ ( x ’ ) .  (50) 

The model  decoupled estimator has been found  to be more 
reliable than  the  algorithm  decoupled estimator. It should 
be  noted that the  decoupling  principle can be  applied  not 
only  to  the normal  equations  method but also to  the other 
least  squares solution  techniques  described above. 

D. Some Other Considerations 

The solution  algorithms described  above assume that  the 
measurement  data  are  available in  the  right format and 
simultaneously. In practice, of course, the state estimator 
measurement  data  have to be mapped from  the real-time 
databasethat iscontinually  updated  bythedataacquisition 
system.  For  example, a bus injection measurement can, in 
reality, be an accumulation  of several  measurements of 
generatoroutputsand  distribution 1ineflows.A busvoltage 
measurement is  often an  average of several  bus section volt- 
ages. The  data acquisition system normally  polls the  dif- 
ferent substations in sequence  and  hence there can be sig- 
nificant  time skew within  one cycle of measured  data.  The 
polling sequence  can usually be set up such that all the data 
needed bythestateestimatorcan  begatheredwithinatime 
window  of a few seconds  and this seems to have  been  sat- 
isfactory for most implementations. 

The problem  of  time skew is a lot  more severe when  all 
the data  are not collected  by the same  data acquisition sys- 
tem. In  the case of a power  pool, the data  may come from 
the several control centers belonging to  the member com- 
panies. If some of  the member companies  have  state  esti- 
mators, the data  passed to  the  pool  could be estimated  data. 
A pool estimator of this  type is  known as a hierarchical state 
estimator and although various ways of handling  time skew 
and other data problems are known  no  field implemen- 
tation experience is  available  yet. 

In practice, the exact configuration of the power system 
and the measurement  system  poses unique  implementa- 
tion problems  for a particular  control center. For  example, 
transmission lines with several  unmeasured  taps  are inher- 
entlyunobservableand  requirespecial approximations.Tap 
changing transformers, which are often unobservable,  usu- 
ally require special handling. The tap measurements, if 
available,  can be used like any other measurement or can 
be considered perfect and utilized  in  the transformer 
model.Moststateestimatorstodayconsiderthetapanother 
state to be estimated. Special cases, like  three-winding 
transformers, require special handling. 

It should  be  pointed out here that  the  field  installation 
of all the  on-line programs largely consists of  installing  the 
state estimator. The  state estimator input is  real-time data 
whereas all other  network programs  are fed  from  the state 
estimator output. The “cut  over” of the state estimator is  
somewhat similar to that  of AGC. It i s  first tested off-line  on 
the  on-line database  and simulated real-time data.  Then it 
is  first tried  on two or  three small substations on-line. Once 
it starts working successfully on this, the rest of the system 
is  cut over one ortwo substations at atime.  In  this process, 
bugs in  the measurement  data  and their  mapping have to 
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be found and eliminated to successfully run  the  program. 
Parameter  data in the database  may  have to be corrected. 
Some tuning  of the R matrix may be  needed.  This  shake-out 
can require  a large effort  but can  be significantly  helped by 
careful  preparation  of the parameter  and connectivitydata- 
base and  proper check out  of  the SCADA  database. 

IV. NETWORK OBSERVABILITV 

When  sufficient measurements  are  available so that  the 
entire state  vector of  bus voltage magnitudes  and angles 
throughout  the  network can  be  estimated, the  network is 
said to be  observable. As shown in the  previous section, this 
is true  when  the  rank of  the  Jacobian  matrix of h(x)  equals 
the  number  of unknown states.  The rank  of  the measure- 
ment Jacobian matrix is, in turn,  dependent on  the loca- 
tions and  types of available  measurements as well as on the 
network’s  topology.  Normally,  the  metering system for  the 
internal  network, i.e., the  controlled  portion  of  the  net- 
work, is designed so that  the  network will  not  only be 
observable, but also redundant. In fact, the placement  of 
the meters is very important  -to state estimator  reliability 
and is discussed later in this section. 

Because availability of  the measurements as well as net- 
worktopologymayvarywith time, it is necessaryto perform 
an observability test  every time there is a change in the set 
of available  measurements or  the  network  topology.  If  the 
network is observable,  state estimation may proceed. 0th- 
erwise, it is necessary to determine  which buses  are unob- 
servable.  These unobservable buses  have to be either 
removed from  the state estimator  calculation  or made 
observable  by adding pseudo-measurements (see Section 
VI). It is possible to have  several  observable  islands of buses 
and modern state estimators are  capable of solving all the 
islands  by providing  a  reference bus for each. 

Two  classes of observability  determination  algorithms 
have  been studied:  numerically based algorithms  and 
topologically based algorithms. 

A. Topological Observability 

Topological  algorithmswhich  only use information  about 
the  network  and measurement topology  were  developed 
in order to avoid  the  rather difficult task of  numerical  com- 
putation of the rank of  the measurement Jacobian  matrix. 
Such algorithms have been  widely used in the state esti- 
mator  observability programs. In [15], Clements  and  Wol- 
lenberg  considered  networks  containing  only  lineflow  and 
bus injection measurements. In the case of networks  con- 
taining  only  lineflow measurements in which real and reac- 
tive  measurementsoccur in pairs, thetopological  condition 
for  observability is that  there exists at  least one bus  voltage 
magnitude measurement and  that  a  spanning  tree of the 
entirenetworkcan be built usingonlymeasured lines. Find- 
ing such a tree can  be done  using  one of  the  well-known 
tree search methods such as breadth-first or  depth-first 
search.  For  an N-bus  network  with  only bus injection mea- 
surements, the  determination  of  observability is even  sim- 
pler; there  must be at  least one bus  voltage  measurement 
and at  least N - 1 bus injection measurements. 

In the  Clements-Wollenberg  algorithm, these two ideas 
arecombined to establish sufficient  (though not necessary) 

conditions  for  observability. In the  first phase of  the algo- 
rithm,  those  regionsof  the networkcontaining treesof flow 
measured lines are identified. These regions  arecalled  flow 
measurement observable islands.  The remaining  regions 
will, of necessity, contain  only bus injection measure- 
ments. In each of these  regions, two types of buses  are 
defined: 1) boundary buses that are common to  both mea- 
surement observable island and the non-flow-measured 
region  and 2) the  remaining buses which are called  internal 
buses. The number  of degrees of freedom of a non-flow- 
measured region is defined to be  equal to the  number of 
internal buses plus  the  number  of adjacent flow-measured 
islands. A  sufficient condition  for observability is that  the 
number  of  injection measurements in  the region be at  least 
equal to the  number of degrees of freedom  minus  one  and 
that no more  than  one  boundary  bus be  unmeasured. 

The Clements-Wollenberg  algorithm is conservative in 
that, if  a  network is declared  observable by it, then  the  net- 
workwill always beobservable; on  theother hand, thealgo- 
rithm may label  certain  observable  networks as not observ- 
able.  The algorithm assumes that real  and  reactive power 
measurements  always occur in pairs  and thus  observability 
of  the P-8 portion of  the  solution  implies  observability  of 
the Q-V portion of  the  solution.  Horton  and  Masiello [16] 
extended  the  Clements-Wollenberg  algorithm  by  treating 
the P-8 and Q-V portions  of  the  solution separately in a 
decoupled  fashion. 

In 1980, Krumpholz, Clements, and Davis published  a 
graph-theoretic  observability  algorithm [IA. The algorithm 
is based on  a fundamental  theorem  which states that  the 
necessary  and sufficient condition for a network to be 
observable is that it contains at  least one observable  span- 
ning tree. Determination  of  observability  of a tree is rather 
simple; in an  observable  tree,  each branch is assigned to 
a measurement incident to it and  each  measurement  can 
only be  assigned to a  single  tree branch.  Assignment of line 
flow measurements to branches is  unique since a  line  flow 
measurement is only  incident to a  single  branch. Bus injec- 
tion measurements  can be assigned to any of  the branches 
incident to the measured  bus.  Rather than  testing observ- 
abilityof all trees contained in a  network,  which is not prac- 
tical, for  a large network,  the strategy of  the  Krumpholz- 
Clements-Davis algorithm is to first  find  a maximal observ- 
able spanning  forest of  flow measured  branches and  then 
use  an algorithm  similar to the  network  flow  algorithm to 
enlarge the  spanning  forest to an observable  spanning  tree 
by  assigning injection measurements to certain  tree 
branches.  This algorithm has been used in  working state 
estimator  observability programs. 

Quintana, Simoes-Costa, and  Mandel [18] proposed 
anothergraph-theoreticalgorithm based on theobservable 
spanning  tree  theorem  of [ lq .   In  their paper, they  related 
the  problem  of  finding an observable  spanning  tree to a 
problem in combinatorial  mathematics  called  the  matroid 
intersection  problem. They applied  the  matroid  intersec- 
tion algorithm to determine  whether an observable span- 
ning tree exists. Another  non-numeric  algorithm was pre- 
sented by Slutsker and Scudder [19], this  algorithm is based 
on symbolic, rather  than  numerical,  reduction of  the mea- 
surement  Jacobian  matrix. The algorithm has been imple- 
mented in  control centers, but  no theoretical  proof  for  the 
algorithm has been provided. 
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B. Numerical  Observability 

Monticelli and Wu [20]-[22]  have proposed  a  numerical 
test for  observability based on triangular  decomposition  of 
the  information  matrix C(x). If C(x) can  be  successfully  fac- 
tored  without  encountering any  zeros in the diagonal, then 
the system is observable. On  the  other hand, if  the  network 
is not observable  then  one  or  more zeros will appear on  the 
diagonal  of  the  triangular  factor.  When  this happens, this 
method adds a pseudo-measurement of bus  voltage  angle 
in  the P-Bobservability test at the bus corresponding to the 
zero diagonal  element  and  then  continues with  the fac- 
torization process.  These  buses then are automatically 
identified as buses requiring  injection measurements for 
observability. The algorithm also provides  information 
about  observable islands within  the  network  if a solution 
is computed  using an artificial measurement set of  zero 
measurement  values where actual power measurements 
are located  and  by  choosing  a  different  reference angle 
value for each  pseudo-measurement of bus voltage angle 
used in the  observability test. If power  flows are zerowithin 
an  observable  island, then all bus  voltage  angles will equal 
that of the  reference bus.  The  pseudo-measurements of 
angle in effect  provide  additional  reference buses in the 
network in order to allow the  computation to be per- 
formed. As a result, all buses in the same observable island 
will have the same voltage angle as the  corresponding 
pseudo-measurement. 

The numerical  observability  algorithms are  new and are 
starting to be  implemented at  some control centers.  They 
havethevirtueof beingconceptuallysimpleandofemploy- 
ing numerical  routines  that are  already  needed for  com- 
putation  of  the state  estimate.  There is, however, the  poten- 
tial  of  difficulty in determining  whether a rather small 
numberappearingonthediagonaliseitheranonzerovalue 
or is actually  zero  but, because of numerical  roundoff, is 
computed to be  nonzero.  Topological  algorithms, on  the 
other hand, require  additional  non-numerical  routines  that 
may be rather  complex but generally run faster than  numer- 
ical tests. No definitive  studies have  yet been  done  that indi- 
cate the  superiority of either  the  topological  or  the  numer- 
ical approach to observability  determination. 

C. Meter Placement 

The observability  of  the  network  under  normal  network 
configuration and normal measurement availability  deter- 
mines the  model  desired  from  the state estimator. Thus it 
is necessary to determine  that  the  metering system is ade- 
quate  before  a state estimator is implemented. Such a  study 
usuallyentailsthecheckingofobservabilityundertheavail- 
able metering  and  then  determining the placement of new 
meters.  The algorithms used  are the same  as those dis- 
cussed  above [21], [23], [24]. 

However, the placement  of meters has to take into 
account not  only  observability but also the redundancy 
required  for good estimation. For  an N-bus system  observ- 
ability  requires  a minimum  of  2N - 1 measurements  and 
it is generally accepted that at  least 3N measurements  are 
needed for adequate redundancy. But just as the observ- 
ability requires  that the2 N - 1 measurements be uniformly 
distributed over the buses, the redundant measurements 
must  also be uniformly  distributed to obtain  the  intended 

effect on state estimator accuracy. Also, this  distributed 
redundancy is crucial  for bad  data detection,  which is dis- 
cussed in the  next section. 

V. BAD DATA DETECTION 

Bad data detection  refers to the  detection,  identification, 
and elimination  of measurements with large  errors. Bad data 
detection relies on measurement redundancyand is based 
on analysis of  the measurements residual vector 

An approximate  linear  relationship  between rand the state 
estimate error is obtained  by  linearizing h(x) about i. This 
relationship is given by 

where 

i = x - i .  (53) 

Using (52) and (3) one can relate  the measurement  residuals 
to the measurement errors  by 

r = Ww (54) 

where  the  residual  sensitivity  matrix W is given  by 

w = I - H(2) cw-1 H(i )TR- ’ .  (55) 

The residual  sensitivity  matrix has dimension  m X m  and 
rank  m - n. Linear dependencies  among  the  columns of 
Ware  determined  by  the  redundancy  relationships  among 
the measurements. 

A. Bad Data Detectability and  ldentifiability 

The  degree to  which bad  data  can  be detected  and  iden- 
tified depends on the degree of  redundancy in the mea- 
surement set. Measurement  redundancy  relationships can 
be characterized  by the  following  definitions.  A critical 
measurement is onewhose  deletion  from  the measurement 
set results in loss of observability  of  the  network. A critical 
pairof measurements is a  pair  of measurements, neither  of 
which is critical, whose deletion  from  the set results in loss 
of  observability. Similarly, one can define  a critical k-tuple 
of measurements, none  of  which  belongs to lower  order 
critical tuples,  whose deletion  results in loss of observ- 
ability. 

A measurement error is said to be detectable if an error 
in the measurement  shows up  in  the measurement residual 
vector. In order  for a measurement error to affect  the mea- 
surement  residuals, it is necessary that the corresponding 
column  of W be  nonzero. It was shown [25] that an error 
in  a measurement is detectable  if  and  only if  the measure- 
ment is not critical. 

A  single measurement error is said to be identifiable  if  the 
column  of W corresponding to that measurement error is 
not colinear with any other  column W. Clements and  Davis 
show [26] that  a  single measurement error is identifiable  if 
and only  if  the measurement is not  critical and does not 
belong to any critical pairs. Conditions  for  multiple bad  data 
detectability  and  identifiability are  also derived in [26]. 

The residual spread component of measurement i is  the 
set of measurements  whose residuals are affected  by an 
error in measurement i. Clearly,  an error in measurement 
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i does not affect the  residual  of measurement j if Wji is zero. 
Two  measurement errors are  said to  be  noninteracting  if 
their  residual spread components  contain no common 
measurements. A  topology-based  method  for  determining 
residual  spread components is presented in [25]. 

B. Statistical Tests for Detection and  Identification of 
Single  Bad  Data 

Under  the  assumption  that  the measurement error vec- 
tor is Gaussian with zero mean and covariance matrix R, it 
can  be  shown that r is also a Gaussian random vector. It has 
zero  mean and covariance 

E = WR. (56) 

Testing for bad datacan  beviewed as a statistical hypothesis 
testing  problem. Three  statistical  tests involving r have  been 
used for bad  data detection:  one is based on testing  the 
weighted sum of squares of residuals  and  the  other two are 
based on examining the  individual residuals. 

Thefirsttest  isachi-squared  testand  iscalled the/(j)test. 
Under  the  hypothesis  that no bad  data  are  present, the 
weighted sum of squares of residuals 

/(i) = rrR-'r (57) 

has a chi-squared distribution  with rn - n degrees of free- 
dom.  One may test the  no  bad data hypothesis by checking 
whether  or  not 

Ai) > Xh-.(a) (58) 

where  the a is  a specified false  alarm probability, i.e., the 
probability  of  exceeding  the  threshold  when  no bad  data 
are  present. 

The I(?) test allows  detection  of bad  data but does not 
identify  the bad  data. Furthermore,  for false  alarm proba- 
bility levels frequently used (typically 0.01 or 0.05), it is not 
a very reliable test for bad  data in the range of f 3 to f 20 
standard deviations [27. For this reason, a second  test, the 
normalized residuals  test, is often  performed. The nor- 
malized  residual  for measurement i equals the measure- 
ment  residual  divided  by  the square root of its variance. 
Thus if the ith diagonal  element  of C is denoted p i ,  then  the 
normalized  residual  for measurement i is 

(59) 

Obviously,  this test  can only be performed  for  those mea- 
surements  whose residual variance is  not equal  tozero. The 
residual variance will be zero  if  the measurement is critical. 
If a measurement is critical  then,  in  theory,  both its residual 
value  and the  computed  residual variance will be  identi- 
cally  zero. In practice, due to numerical  roundoff, both 
numberswill be  small nonzero  numbersand  their  ratiowill 
be a meaningless number. For this reason, it is important 
that critical measurements  be identified  prior to perform- 
ing  the  normalized residuals  test. 

Normalized residuals  are  zero-mean unity-variance 
Gaussian random variables when no bad data  are  present. 
One may  test  each r r  individually and if 

lrrl > Y (60) 

for oneor more ithen the  no bad  data  hypothesis is rejected. 
A value of is chosen which  determines the false  alarm 
probability. 

It can  be shown [28] that  if all of  the measurements  were 
error-free except for one,  say measurement k,  then 

I r f l  2 i f k .  

Note  that  the  inequality in  the above equation is not strict. 
If  the  inequality  were strict, then  one  would  be guaranteed 
that  single instances of bad  data could be detected and 
identified  provided  that  theother measurement errorswere 
relatively small.  This will be the case if measurement k is 
not  critical  and is not  a  member  of any critical measurement 
pair. If measurement k is  a  member of a critical  pair  of mea- 
surements, then  the  magnitude of  the  normalized  residual 
of  the  other  member  of  the  critical  pair will equal  that of 
measurement k. 

There is a  computational  burden associated with per- 
forming  the  normalized  residuals test  since it is necessary 
to compute  the  diagonal  elements  of E, given by 

where hi is the ith row  of HU). To avoid  the  matrix  inversion 
calculation  burden, in practice, the  residual was often  nor- 
malized  by uii, the measurement error variance,'instead of 
pii .  However,  even when  a  bad measurement is not part  of 
acritical tuple,  thiscalculation  cannot  discriminate between 
the bad  measurement residual  and some neighboring mea- 
surement residuals.  This problem is known as smearing. 

It was soon noticed  that hi is a sparse  vector  and only those 
elements of C(i )  corresponding to pairs of nonzero  entries 
in hi are needed to compute  the  diagonal  elements of E. 
These nonzero  elements turn  out to be the  nonzero ele- 
ments of CUI. It i s  possible to compute  the needed  ele- 
ments of C(i)-' using an efficient  algorithm  known as the 
sparse matrix  inversion  algorithm. Use of this  algorithm  for 
calculating  normalized  residuals was proposed by Brou- 
solle [29], and has been used in  control centers. 

Monticelli and Garcia [27 have proposed  a third statis- 
tical test, called  the 6 test, to be done in conjunction  with 
calculation  of  normalized residuals.  They characterize  a 
gross  measurement error at a  single measurement as an 
unknown bias error. The  bias error  for measurement i is  
written as a&;, thus  the  term b; is  a  normalized bias error. 
An  estimate of  the  normalized bias error is given  by 

6, = u i ; r y / p j i .  

The 6 test  consists of checking  whether [6;1 > c, for each 
of  the  measurements.Aswith  the  normalized  residualstest, 
c is a  prespecified  threshold whose  value  can be  computed 
to yield  a  given false  alarm probability  for  the test.  The per- 
formance of  the 6 test  appears to be comparable to that of 
the  normalized residuals  test. 

When  potential bad  data  have been  identified, it is nec- 
essary to recompute  the state estimate  and  then  redo  the 
bad data detection tests to assure that no  further  bad data 
remain.  Typically, the measurements with  the largest nor- 
malized residuals  are  removed, either  one at a  time  or  in 
groups,  and the state estimate is recomputed until-  the 
/(i) and the normalized  residuals tests  are  passed.  This pro- 
cedure may  be prohibitively  time-consuming  due to the 
need for several  state estimate  calculations. An alternative 
procedure  that is more  efficient has been suggested by 
Aboytes and  Cory [30]. 

Rather than  recompute and refactor  the CG), Aboytes  and 
Cory proposed  correcting  the measurement vector in such 
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a way as to suppress the measurement containing  the bad 
data.  Suppressing  measurement i is  equivalent to setting 
row io f  Mi) to zero, thus  the corrected measurement  Jaco- 
bian  matrix is 

H,(i) = H(2) - eihi (64) 

where hi is  the ith row  of H ( i )  and e; is an m-dimensional 
vector whose ith element is a one and whose other ele- 
ments are zero. An expression for  the corrected inverse of 
the  information  matrix can be  found using the matrix  inver- 
sion lemma,  given by 

[Cc(i)]-’ = [C(i)]-’  - [C(i)]-’hiTh,[C(i)]-’ /p~. (65) 

Substituting (64) and (65) into  the  normal equation gives the 
following expression for  the corrected state  estimate: 

C(i)Ax, = H(i)TR-’[z - Mi) + aieiri/pi] (66) 

where i is  the previously  computed value of  the state  esti- 
mate and A i c  is  the  correction  to  that value. 

This correction is a linearized  correction but it may be 
iterated if necessary.  The reduction in computations is very 
significant since refactorization of C(P) is avoided. 

C. Treatment of Multiple Bad Data 

Provided that measurement redundancy is adequate, the 
normalized residuals or  the 6 tests for  bad data work well 
when  either a single bad datum  or  noninteracting  multiple 
bad  data  are present. When  interacting bad  data  are  pres- 
ent, it is no longer  certain  that  the largest  measurement 
residual will correspond to a large measurement error  nor 
is it certain  that a small  measurement residual indicates no 
bad  data for  that measurement. Identifying  multiple bad 
data is different and the methods  described  here have not 
yet  been  incorporated into  current practice. 

Xiang,  Wang, and Yu [31] proposed a method  for detec- 
tion and  estimation  of multiple bad data. Their ideas  were 
expanded byMili,Van Cutsem,and  Ribbens-Pavella in [32], 
[33]. In [31]-(331 the  method of dealing with  multiple bad 
data is to estimate the errors  of the suspected  measure- 
ments from  the measurement residuals generated by the 
initial state  estimate.  The  estimated errors are then used to 
correct  the measurement vector prior  to recalculation  of 
the state  estimate. 

The  measurement error estimates are computed based 
on  the relationship  between measurement residuals and 
measurement errors  given in (4). Since the rank  of W is  
m - n, it is not possible to estimate more  than m - n mea- 
surement errors on this basis.  Furthermore, for  the same 
reason, there are only rn - n independent measurement 
residuals; thus it would  not make  sense to base the esti- 
mates on more  than rn - n residuals.  Suppose that on  the 
basis of some initial screening for  bad data, the measure- 
ments  are partitioned  into two classes: 1) the suspected 
measurements of  which  there are s(s 5 rn - n) and 2) the 
remaining rn - s measurements.  The  suspected  measure- 
ments  are denoted  by  the  subscript s and  the  remaining 
measurements by the subscript t. 

this notation, (5) may be  written  in  partitioned  form as 

The p residuals  can thus  be  written  in  the  form 

rp = Wps w, + dp 

where 

dp = Wptwt. (69) 

Estimation of w, can be  treated as a least  square problem 
with rp being  the “measurement.”  A  least  squares  estimate 
for w, can be calculated by  minimizing  the quadratic cost 
function 

l(w3 = [rp - W,,wJflr ,  - w,,w,l (70) 
where Pis a positive-definite  weighting matrix. In order to 
be able to compute a unique estimate for w, it is necessary 
that W,, have rank s. It can be shown that a necessary  and 
sufficient condition  for W,, to be of  rank s is that the net- 
work remains  observable after deletion  of  the suspected  set 
of measurements.  The  expression for  the resulting least 
squares  estimate, when  the rank condition is satisfied, is 
therefore  given by 

ws = [w;,fwps]-’w;~fr,. (71) 

Theaboveestimatefor wwill  beoptimal inastatistical sense 
if  Pis chosen as the inverse of  the covariance matrix  of d,. 

MiIieta/.advocatetheuseoftheestimateofw,thatresuIts 
when  the residuals  used to  form rp coincide with  the sus- 
pect set. In this case, the expression for  the estimate  sim- 
plifies to 

w s  = w;”,. (72) 

As in the single bad  datum situation, the measurement 
vector can  be corrected  subtracting w, from z,. This  has the 
same effect as explicitly  deleting  the measurement (on a 
linearized basis). Instead of  doing that,  statistical  tests could 
be  done on k, to  determine  whether bad  data  are  present 
at the suspected  measurements. 

Monticelli, Wu, and Yen [MI have  suggested that  the  mul- 
tiple bad data identification  problem  be set in a decision 
theory framework. Their  formulation takes into account 
measurement reliability as well as measurement  accuracy. 
In their  method, a binary  decision  tree is constructed  and 
partially traversed in  the process of  identifying bad  data. 
Strategies for  minimizing  the  number  of tree nodes to  be 
examined  are  proposed. 

Other  solutions to  the bad data problem have been sug- 
gested. Merrill and Schweppe[35]  had  suggested anon-least 
squares  state estimator that automatically damps out  the 
effects of bad  data.  Kotiuga [36],  [37] had proposed  the use 
of linear programming  and  the L, norm  to detect bad  data. 
Since nonquadratic state estimators have not  been imple- 
mented in the real-time environment, most of  the research 
on bad  data detection  methods has concentrated on those 
that complement the least  squares estimator. 

Suppose that the estimate. of the errors is based on Bus FAcroRs 
p(s I p I m - n) of  the residuals and  that  the residuals 
of  the suspected  measurements  are included among the Since the state  estimator  executes  every  few  minutes, the 
p residuals.  The subscriptp  will refer to these  residuals  and ratio of each bus M W  load to  the system M W  load can be 
the subscript q will refer to  the remaining residuals. With tracked over time. This ratio and the  power factor at  each 
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bus  are the  bus  load forecast factors and they are stored  and 
updated. For  each  bus,  several  pairs of these factors can  be 
stored corresponding to the  time of day,  day  of the week, 
and  even month  of  the year.  The number  of pairs stored 
depends on how  much  they vary  over time. 

These factors can then be  used for  forecasting  the bus 
loads for  a  given system MW load  and a given  month, day, 
and time. These  bus  loads  are  forecasted mainly  for two 
different purposes. If communication  or RTU failure makes 
a normally state estimated bus  unobservable, the  fore- 
casted complex  load can  be  used as pseudo-measurements 
to make the  bus observable.  The other use is during study 
mode  when  the  power system studied is for a different sea- 
son,  day, or time.  The  bus load forecast  can automatically 
specify all the  bus loads from a given system MW load. 

The  pair of factors for each  bus for  a  particular  period can 
be  expected to change over a long  period  of  time as the 
system characteristics change. When  the state estimator 
first starts  up,  these factors are initialized to average num- 
bers.  Then the state estimator  continually filters these  fac- 
tors to take into account  the latest  measurements. For 
example, the factors for Saturday morning are updated 
every  Saturday morning;  usually a very simple  digital  fil- 
tering scheme with an empirically  determined parameter 
used. 

VII. EXTERNAL NETWORK MODELING 

The external  modeling  problem is  defined  with respect 
to Fig. 4. The internal system is the observable  system  solved 
by  the state estimator. It is assumed that  the  unobservable 

n EXTERNRL 

Fig. 4. The  internal and  external systems. 

parts within  the  jurisdiction of  the  control center  are either 
lumped into the  external system or made  observable by 
using  pseudemeasurements. The boundary of the  internal 
system is denoted  by  the  boundary buses (marked B ) ,  which 
are the  outermost buses to be  observable.  The boundary 
buses  are the  interface buses between  the  internal and 
external system.  Thus one  of  the  main  constraints  of  the 
external  model  solution is that  the  boundary bus  voltages 
must  be the same  as those  calculated  by  the  internal state 
estimator. 

The external system is the rest  of the  interconnected  net- 
work. The problem is how to represent it in real time  in the 
absence of  real-time data from  this  portion  of  the  network. 
The  absence of any real-time data  makes this  external  net- 
workcompletelyunobservable.Thusenough datawill have 

to be  assumed to obtain  a solved model  of  the  external  net- 
work. The order (or size) of  the  external  network  model can 
also  be  chosen and  the  amount of data needed to make this 
network observable depends on this size. 

The  various methods used for  the  external  model cal- 
culations are reviewed by Wu and Monticelli [38] and Bose 
[39]. The externalequivalentmethods were  used in the early 
securityanalysis packages  at control centers. In these meth- 
ods, the  external  network was reduced  off-line to  the 
boundary buses.  This reduced  network  representation  had 
the advantage that it required  no  assumption of external 
system  data to make the  model observable.  The reduction 
could be obtained by one  of  the many Ward or REI type 
methods. The variations in load  and  generation  patterns 
could  beaccommodated  on-line bychangingthe boundary 
bus injections to ensure power  matching at the  boundary. 
The problem was more difficult when  the  external  network 
topology changed and the reduced  network became  an 
incorrect  representation.  Although  the  reduced  network 
could be updated to reflect these topology changes, the 
occurrences of such  status  changes in  the external  network 
were hard to detect. In addition, since the  boundary was 
fixed,  any unobservability  developing within  the  internal 
system  had to be handled with pseudo-measurements as 
the unobservableareas could  not be lumped  with the exter- 
nal  system. 

The more  commonly used approach  for  external  mod- 
eling  today consists of  the  external  solution methods. !n 
these  methods, a significant  amount  of  the  neighboring 
network is explicitly  represented. The  status of  the equip 
ment and the loads and  generation are  assumed in real time 
to make this  network observable.  The equations of  the net- 
work are then solved to obtain  the  real-time  external  model 
representation. The assumptions  of  real-time data  are  made 
on reasonability. Breaker  statuses  are considered  normal, 
external loads  are considered  proportional to internal load, 
and generation is considered to be economically dis- 
patched. The solution  method can  be either the power flow 
or  the state estimation  algorithm. 

Since the  external  power system is not  of  direct interest, 
the  criterion  for  the adequacy of  the  external  model is not 
the exact replication  of  the system.  Instead, the  external 
model is considered quite adequate if  it can  accurately 
reflect  the effects of  the  external system when subsequent 
analysis is done on the  internal system.  This  analysis  may 
be contingency analysis,  any operator  power  flow study, 
contingency  remedial  action,  security  constrained dis- 
patch, optimal voltage control,  or  other  optimal  power  flow 
study. 

The main source of  errors in the  external  model is the 
assumption of real-time data.  Since the subsequent func- 
tions, such as contingency analysis,  study incremental 
changes to the  power system, errors in the status assump 
tions have more  of an effect on this analysis than  errors in 
analog  assumptions.  That is, in general, it i s  more  important 
to  know  the status of  important  transmission  lines  and gen- 
erators than  the exact  values of  the loads and  generations. 
Also, i f  the  errors in  the assumptions are electrically closer 
to the  internal system, the  effect  of  the subsequent  analysis 
is more  profound.Although nearby statusassumptionscan 
cause the  highest  errors,  other sources of  errors are the 
assumptionsfortransactions  between  external companies. 
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Also, forthese  transaction  errors  or  generation status  errors, 
a secondary  source of  errors is the  assumption  of gener- 
ation  pattern. 

Bose  has shown [ a ]  that the external  equivalent  methods 
produce larger errors  than  the  external  solution methods. 
Among  the  external  equivalent  methods  the REI equiva- 
lents seem to produce larger errors  than  the  extended  Ward 
equivalents. Among  theexternal  solution  methods  the  more 
common  solution  technique is the  power flow solution. In 
practice  this  method often produces large  mismatches at 
the  boundary buses when wrong assumptions are  made in 
the  external system.  The  state estimation  solution has been 
suggested  by  Geisler and Bose [41] and Geisler and  Tripathi 
[42] to take advantage of  the  redundancy at the  boundary. 
For wrong assumptions in the  external system, the state 
estimation  solution  tends to disperse  the  errors away from 
the  boundary buses  and  also provides  better  indications  of 
the  location  of  the wrong assumptions. 

Another advantage of  using  the state estimation  solution 
for  the  external  model is that the same program can  be  used 
to solve the  internal as well as the  external  networks. The 
internal and external systems  can  even be solved in one 
pass [43], care being  taken  that  external  errors not smear 
internal results. In practice,  however,  separate solutions 
have been used mainly because the  external  model  need 
not  be solved as frequently as the  internal. 

Obviously,  the  external  modeling  solution is an  exercise 
of  approximation in the absence of  real-time data from  the 
unobservable  part of  the system.  Since the  neighboring 
power systems  are often observable to the  neighboring 
control centers, real-time data  can be made  available 
through data links  between control centers. Although such 
data links are now  being established, the exact  data needed 
to be  exchanged for  external  modeling remains under 
study.  Since a control center does not  model i ts neighbor’s 
system in the same detail as i ts own, any  exchanged  data 
have to be  mapped from one  model to another. The  data 
can be in a raw or  estimated form although  the  estimated 
form  will have a largertime skew.The problemsof  handling 
exchanged  data for  external  modeling is somewhat similar 
to  the  hierarchical state estimation  problem. However, the 
present rate of establishment  of data links will  not alleviate 
the  external  modeling  problem in the near future and  the 
complete  availability  of all needed  real-time data is not  fore- 
seen for even the  distant  future. 

The output  of  the external  model is the  combined  model 
of the  internal  and  external systems that is ready for  con- 
tingency  and  other analysis. A  nontrivial  bookkeeping 
problem in obtaining  this  final  model is the  handling  of 
multiple islands. Network islands  are identified  by  the 
topology processor and each  such island  must have one 
reference bus.  The  state  estimator,  however,  solves for 
observable  islands but once  the  external  model is com- 
bined to these observable islands  any  discrepancies in the 
phase  angles  have to be resolved with respect to network 
island  reference buses. 

Amajortaskinchoosingtheexternal model istheoff-line 
determination  of  the  external  model parameters which  then 
become a  part of  the  control  center database. In  the exter- 
nal solution  approach,theexternal  network  representation 
has to be  determined. Since the actual external  network 
consists of  the  whole  interconnection  outside  the  internal 

Fig. 5. The three parts of the  external system. 

system, not all of it can  be represented in the  model. Usu- 
ally, the  external system is divided  into three  parts (Fig. 5): 

1) The portion farthest away that does not have  any effect 
on  the  internal system  need not be  represented at all. 

2) The portion that is near enough to have  some effect 
on  the  internal system but can  be represented in a reduced 
form. 

3) The portion  neighboring  the  internal system that has 
significant effects  and must be represented explicitly. 

The  exact boundaries  of these three  parts have to be 
determined from  off-line studies.  At  present,  these  are 
mainly  heuristic studies  (Gahagan eta/. [44]) that  determine 
the  sensitivities of the internal  network to changes in the 
external  network at various electrical distances.  Various 
boundaries of the  three  parts are  assumed  and the sensi- 
tivity studies  are carried out  until, by trial and error, rea- 
sonable boundaries are  established.  Such a study  requires 
a large number  of  power  flow,  network  reduction, and con- 
tingency analysis runs but is crucial  for  the  proper  perfor- 
mance of  the  external  model. 

Similar  studies  have to be  done  for each internal system 
separately as the  external  model parameters  are  very sys- 
tem-specific. For example,  an internal system in the  middle 
of a large interconnection may require  a  much larger  euter- 
nal network  representation  than an internal system on the 
periphery  of  the  interconnection. 

VIII. PENALTY FACTORS 

In the  economic  dispatching  of  generation,  the sensitiv- 
ity  of  the  transmission losses to the  individual  generation 
levels is taken into account  by  penalizing  the  incremental 
cost functions of  the generators.  These penalty  factors are 
given  by 

where L is the system loss and Psi is the real power output 
of  the i th generator. 

The sensitivities aLlaPgi depend on the state of  the  net- 
work. Several  sets of these sensitivities  corresponding to 
several networkconditionscan be stored  for use bytheeco- 
nomic  dispatch  function. However, with  the availability  of 
the  real-time  network  model it is possible to calculate these 
sensitivities right after  the  external  model  calculation is 
completed. These penaltyfactors  reflect  the  behavior  of  the 
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present network  conditions  more closely than  the stored 
factors and their usage results in more  economic  produc- 
tion of electricity. 

The power balance equation  of a power system is 

C P g i - D = L  (74) 

where D is  load demand. In incremental form (74) can be 
written as 

I 

APgi - AD = AL. 
I 

(75) 

Now, the sensitivity of  the load demand to bus voltage 
angles  can be  written as 

or in matrix form 

[g] = HT[g] 

(76) 

where Oi is the bus  voltage  angle  at  bus i ,  Pi is the real power 
injection at bus j ,  and H is the matrix of elements [aP{aOi]. 

Solving ( 7 7 )  and defining  the resulting vector as a 

Substituting (78) into (75) 

resulting in 

(78) 

(79) 

(80) 

Thusthepenaltyfactorsarefoundbysolving(78),inwhich 
the aDla0, terms  can be  interpreted as the sensitivity of  the 
slack  generation in  the  network solution to  the bus voltage 
angles, and H i s  one  quadrant  of the Jacobian matrix. In the 
actual  implementation, the available  Jacobian matrix is used 
and the needed ai’s are extracted. If a decoupled  power 
flow is  being used, H can be  approximated  by the constant 
5’ matrix. Although an iterative procedure is needed to get 
the exact ai’s, one  iteration  with 5’ is thought to give enough 
accuracy.  Also, theassumption  of achange in demand being 
the same  as a change in slack power produces  an error  shift 
in the ai’s [45] but  this does not affect the accuracy of  the 
economic dispatch. 

In addition to obtaining  the sensitivity of losses to  the 
generators it is  sometimes of interest to obtain  the sensi- 
tivity of losses to interchange. For  example,  these sensitiv- 
ities are  needed when evaluating the economic  desirability 
of an  interchange transaction. One way to  do  this is to cal- 
culatethe loss sensitivityto the net  interchangeof the inter- 
nal area [&]. Since  interchanges of interest are between the 
internal area company and one  of  the external area com- 
panies, the loss sensitivity of that external area company is 
sometimes  desired.  This  can be approximated as a weighted 
average of  the sensitivities of  the losses to that external 
company  generators. 

In  addition  to  the real-time penalty factor for  economic 
dispatching, penalty factors are  needed for various other 
studies.  Since  these studies can be  for  different  network 

conditions, penaltyfactorsfor several conditionsare stored. 
These stored penalty factors,  however,  can be automati- 
cally updated to reflect the slow  changes in real-time pen- 
alty factors.  This updating is similar to  the updating  of  load 
distribution factors described in Section VI. 

IX. OTHER CONSIDERATIONS 

The  very first implementation  of these functions  occurred 
in the early 1970s. By 1980 most new  control centers were 
routinely  implementing these functions. The capabilities 
havebeenexpandedovertheyearsandtodayeachfunction 
is  customized to take into account the special  features and 
needs of  individual  utilities. Experience with  the imple- 
mentation and operation  of these functions over  these  years 
has led notonlyto moreefficient algorithms but alsoto  more 
reliable programs that can withstand  the range of  condi- 
tions in a real-time environment. Despite  the  sophistication 
of these functions today, they have not reached their  poten- 
tial usefulness as an operating aid. Operator acceptance 
has come slowly as the efficiency, reliability, ease of  inter- 
action,  and  operator training have improved. 

The  usefulness of these functions has  also depended on 
someofthesupportfunctions.Forexample,although much 
production grade interactive software  had  already  been 
designed for  engineering use, that level of interaction was 
completely inadequate for  the operator. For the  control 
center environment, the man-machine interface had  been 
developed for  the SCADA-AGC  systems and  the  interface 
tothese  networkfunctions had to bedeveloped in this envi- 
ronment. Fortunately, the man-machine interface has  also 
gone through dramatic improvements in this period  incor- 
porating such useful  functions as display compilers and full 
graphics.  This  has led to  the decoupling  of  the  network 
analysis  programs from  the way the  operator interacts with 
them. However, the design of  the displays  and the pro- 
cedures to get to these  displays remain a critical issue on 
which operator acceptance completelydepends.  Although 
training is very important in familiarizing the operator with 
such new functions,  their use will certainly  depend on  how 
easily the  operator can  access the needed information in 
a timely manner. 

Another  support function  that influences the efficiency 
and reliability of these  programs is the database  manager. 
The addition  of  the  network  functions  in  the  control center 
significantly increased the already  large  database that was 
needed to  supportthe SCADA-AGC  functions.The descrip 
tions and the parameters of  the  network are  needed in  the 
database to support the new programs.  The off-line check- 
ing  of  the  network data is more  complicated because of  all 
the connectivitychecks. More importantly,  the  mapping of 
these  data into  the program data structure has to  be 
designed  very carefully to provide  the highest computa- 
tionalefficiency.Quiteoften,thedatastructurehasagreater 
effect on  the program speed than  the  algorithm used.  The 
unique  requirements  of a modern  control center  have 
resulted in database  design and management techniques 
that are different  from  other large database  handlers. One 
of these unique  requirements is theefficient  support  of  the 
network programs. 

Certain procedures in the  implementation  of these pro- 
grams  have  become  standard in the  industry. For  example, 
the off-line  checkout of the  network database is  done  by 
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a topology processor  and power flow program. Although 
reasonability checks  are normally built  into  the database 
generators, the  ultimate test is the successful running  of 
network  solutions on  the  network  under various topology 
and loading  conditions. The  database  can then  be tested 
on  the  network programs on simulated SCADA  data.  The 
simulated SCADA  data  can be  produced  by a power flow 
withrandomnoiseadded.Thetuningofthestateestimator, 
mainly the R matrix, is also done at this stage. Although  the 
R matrix is supposed to reflect the measurement error vari- 
ance, it is often  tuned to obtain  good convergence. 

After the  network programs and database  are tested off- 
line, their  implementation in  the  field remains a major  step. 
The mapping of the actual SCADA  data into  the  input  of  the 
topology processor  and the state  estimator requires the 
patient shakeout of all the measurements. Similar to the 
field  implementation of the SCADA  system, a few mea- 
surements, usually from one  or two RTUs  at a time, are cut 
into these  programs.  The  bad  data detector is  used to shake 
out  the measurements.  Experience  has shown that many 
gross errors in  the measurements cannot  be detected by 
the SCADA  system but have to be corrected at this stage 
before the real-time model is  operational. If the state  esti- 
mator is capable of parameter estimation, any suspicious 
parameters  can  also be  checked out at this stage. Although 
bad  parameters  are often a problem,  the actual  use of a 
parameter  estimator is  not common; instead, more  heu- 
ristic methods are  used. Once  the  topology processor  and 
state estimator are operational on all the measurements, 
the rest of  the  network  functions are  easier to implement. 

X. CONCLUSIONS 

This  paper  describes those  functions in a power system 
control center that  track  the  real-time  network  conditions 
with a network  model.  Although  the basic principles  of esti- 
mating  the  network state from periodic measurements  have 
been known since 1970, the actual implementation has 
steadily improved in  the last fifteen years.  The weighted 
least  squares algorithm is still used for state estimation, but 
the decoupled  and  orthogonal versions have  been  devel- 
oped  for better efficiency and  accuracy.  A tracking  network 
topology  that enables the state estimator to use  data from 
the  previous cycle may add to  the efficiency. Better meth- 
ods to check for observability  and  bad data continue to be 
developed.  The  best approximations for estimating the 
external model are starting to  be replaced with methods to 
handle external real-time data  over  data links. In addition 
to these better methods, the  implementation on different 
power systems all over the  world has resulted in the accu- 
mulatedexperienceofadaptingthesefunctionstodifferent 
power system equipment, to  different system operational 
procedures, and to different  functional  requirements. 
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