
Artificial Intelligence in Power  System 
Operations 

Power  system operators often reach a cognitive barrier when 
information arrives too fast during a power system  emergency. At 
such  times it becomes difficult to reach a correct diagnosis of the 
problem or to formulate the correct decision when actions must 
be taken. Artificial Intelligence gives  designers of Energy  Manage- 
ment Systems a way to solve  many of the diagnosis and decision 
problems so as to make the EMS more useful. This  paper  explores 
reasons why AI techniques, such as knowledgebased expert sys- 
tems,  are being used in EMS designs and the differences between 
knowledgebased expert systems and traditional numeric a l p  
rithm development. The differences between expert  systems and 
the numeric approach extend to the basic conception and design 
of the applications. This  is illustrated using a relay fault diagnosis 
system, showing both  the traditional and rapid prototyping 
approaches to its development. Finally, issues concerned with the 
implementation of AI in EMS computers are explored along with 
the authors' predictions of possible AI applications to power sys- 
tem  operations. 

I. INTRODUCTION 

Modern power systems  are operated by highly skilled 
operators through computerized control systems. The 
energy  management system (EMS) is the center of a control 
system organized in a hierarchical structure utilizing remote 
terminal units, communication links, and various  levels of 
computer processing systems.  The function of the EMS is  
to ensure the secure and economic operation of  the power 
system as well as to facilitate the minute-by-minute tasks 
carried out  by  the operations personnel. The EMS is mainly 
designed to be used in the"norma1"state where such func- 
tions as state estimation, security analysis, and optimal 
power flow are  used to ensure  secure operation while func- 
tions such as automatic generation control, economic dis- 
patch, unit commitment, and load forecasting are  used to 
ensure that the most economic operation is obtained. Much 
of what  happens in normal operation is now computerized 
and human operators only intervene to carry out  the few 
manual  tasks required. 
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The picture is quite different, however, when we look at 
the use of an EMS during an unforeseen event or a failure 
of major components on the power system. In such 
instances, the EMS serves mainly as  an information gath- 
ering and reporting system and the sophisticated appti- 
cation s~ftware that functions in normal operation may be 
of little use.  For  example, in a regulatory shutdown of all 
nuclear units, human operators will take overtheeconomic 
dispatch and unit commitment to resc:hedule economic 
operation. Similarly, when a sudden loss o f  transmission 
equipment occurs it is human operators who must under- 
stand what has happened and decide on what actions to 
take. It is especially during such  emergencies that conven- 
tionalsoftwareis1esseffective.Therequirementforsmarter 
software thus becomes more  important in such  instances. 

Coping with emergency  events is reflerred to as a diag- 
nosis and decision process.  Such  processes  are illstruc- 
tured and their  solution rests heavily on the experience and 
skill of the human operators to react correctly. The  key to 
human ability in such situations lies in the experience with 
sirnilareventsandtheuseof heuristicstomapexistingcom- 
plex situations onto learned past  events to solve problems. 
Since Artificial  Intelligence allows the realization of heu- 
ristic techniques in a computer, the waly is now  open for 
many new applications of computers in power system oper- 
ations. 

There is also a need to incorporate heuristics in many of 
the  functions now carried out by large application pro- 
grams.  For  example, security analysis programs may fail to 
converge or economic analysis programs may fail to meet 
certain operating constraints because the constraints are 
difficult  to express mathematically. In such cases, human 
intervention must be relied on  to solve or circumvent the 
problem. Research usingartificial  intelligence isalso begin- 
ning  to yield methods of embedding complex heuristics 
into conventional application software for use in normal 
power system operations. 

In  this paper we are specifically addressing the use of 
expert or knowledge-based systems wlhich is one of the 
principal branches of artificial intelligence. Several exper- 
imental and near-practical-use expert systems  have been 
developed for use in power system operations. Sakaguchi 
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and Matsumoto [I] discuss the use of an expert system to 
capture heuristic knowledge from operators and  opera- 
tions manuals that direct  the steps taken in restoring power 
after a large system failure. Wollenberg [2]  and  Larson eta/. 
[3] describe an experimental expert system to intercept 
alarm messages and present the operator with a summary 
of the most pertinent  information. The authors in [4]-[8] dis- 
cuss the use of expert systems in application programs. 

Power  system operations is not tlhe only real-time control 
environment where expert systems  are being applied. Ref- 
erences [9]-[Ill describe the use alf expert systems in pro- 
cess control applications and [I21 describes an experimen- 
tal expert system to aid nuclear plant operators in 
diagnosing reactor shutdown prolblems.  Several common 
features can be found  in these systems.  First, they normally 
require human operators 24 h  a day  and this gives a great 
advantage to an expert system that can provide  the right 
expertise at  any hour and  any  day of the week.  Secondly, 
the expert system  can potentially  provide  a  rapid reaction 
to emergency  events  by summarizing information  quickly 
and checking many more applicable rules than a human 
operator could  in  the same period of time. 

This  paper begins by analyzing the diagnosis and deci- 
sion process in power system operiltions and discusses how 
this process might benefit from thle  use of expert systems. 
After describing typical examples, efforts are  made to define 
what the AI techniques are and how they differ from 
numeric techniques.such as linear  and nonlinear program- 
ming.The strength of  AI  over conventional techniques and 
how knowledge-intensive problerns are  solved is also dis- 
cussed.  Early experiences so far  have indicated that imple- 
mentation of AI in EMS computers poses a difficult prob- 
lem.  Several alternate implementation schemes  are pro- 
posed  and explored. Finally, some predictions about future 
uses of AI in EMS are  made and sorne needed technological 
innovationsare listed that are required before AI  can deeply 
penetrate power system operations. 

11. DIAGNOSIS AND DECISION PROC:ESSES IN POWER SYSTEM 
OPERATIONS 

Is there a need for knowledge-based software in power 
systems operations? We believe there is. A fundamental 
motivation  for such software is the need to overcome the 
human cognitive barrier which conventional EMS instal- 
lations encounter during emergency operation or when 
application programs are  used beyond their design limi- 
tations, 

The cognitive barrier is felt as t:he complexity of power 
system operations increases without sufficient efforts to 
cope with it. This is true of  today’s E M S  installations where 
the  quantity of data gathered and the rate at which they are 
gathered can overwhelm a humcan operator. It must be 
noted that the driving force in EMS complexity is  the desire 
to operate the power system  closer to its limits so as to make 
better use of generation and trarwnission facilities. This, 
in turn, has  made a qualitative change in system operations 
requiring  quicker diagnosis and decision making by oper- 
ators. Fig. 1 illustrates this situation. While system com- 
plexityincreasessteadily,theoperator’sabiIitytocopewith 
it decreases.  Since the complexity of power system oper- 
ations is very likely to continue to increase in the future, 

IS SYSTEM COMPLEXITY 

/ 

Lb 1 
1 C 

T Y  

Fig. 1. The risk of enlarging  the  human  cognitive  barrier. 

there is a risk of human operators being unable to manage 
certain functions unless their capability is enhanced. 

As indicated earlier, the cognitive barrier is quickly real- 
ized in power system operations when sudden and unfore- 
seen  events occur. When human operators meet  such an 
event, they have to understand the situation (diagnosis)and 
determine actions (decision) to return the system to nor- 
mal. As all the tasks  have to be done in real  time, the oper- 
ators  are  exposed to heavy mental stress and this makes the 
cognitive processes distinctively  different from that expe- 
rienced by others. For  example, experienced designers of 
large-scale integrated circuits  often face similar cognitive 
barriers but solutions are not required in real time. 

There  are  several  ways to help operators overcome this 
cognitive barrier. First, operators need to understand what 
is happening on the power system and the AI software can 
give guidance by showing various scenarios that explain the 
situation consistently. Operators can then check for the 
most plausible scenarios,  some of which may  have been 
overlooked. Similarguidancecan beexpected in using large 
application programs where the AI system  can guide  the 
operator in its use. Further,  since power system operations 
are filled  with many fragmented tasks that are done almost 
routinely, smart software to  do such routine tasks could 
relieve operators and allow them to devote their time  to 
more  important tasks. 

Ill. KNOWLEDGE INTENSIVE VERSUS NUMERIC PROBLEMS 

An expert system is a software paradigm where knowl- 
edgeconcerningacomplexproblem isencoded intoacom- 
puter program. The framework of expert systems is 
designed to enable easy encoding of knowledge and easy 
checkout of the expert system’s performance. A general 
architecture for expert systems is shown in Fig. 2. Four major 
software elements comprise an expert system: the  knowl- 
edge  base,  an inference engine, building and checkout util- 
ities, and the user interface. 

In order to use a knowledge base on a computer some 
facilities are needed to read a module from the knowledge 
base, decide whether it is to be  executed, and to carry out 
the execution. The inference engine is responsible for  this 
task  and functions  much like an interpreter  for conven- 
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Fig. 2. Architecture of an expert system. 

tional programs.  The actual execution or  computation in 
the inference engine,  however, is quite different from an 
interpreter. The other software elements  are for the con- 
venience of the developer and user of the software.  Typical 
expert system programs are  very large and the complexity 
of the knowledge base  necessitates  advanced editors and 
browsing tools to debug them. Expert  systems  also provide 
the  ability to explain the reasoning used  (e.&, to trace the 
rules used in a rule-based  system) which is important in 
checking it out. 

Depending on the representation scheme,  an AI program 
becomes either rule-based,  frame-based, or logic-based as 
shown below. 

A. Rule-Based  System 

The popular OPS5 expert system, [13], will be used as an 
example. A piece of knowledge is represented in a form 
- 

called a production rule, which has a premisepart (IFclause) 
and an action-part (THENclause)  as shown below: 

( p rule-name 
(premise-part) + (action-part) ) 

The  rule-based sys!:em hastwo kirldsof memory: short-term 
(or working memory) and long-term. The short-term mem- 
ory(STM) containsfactual knowledge, to be modified as the 
computation proceeds.  The long-term memory (LTM) con- 
tainsthe  production rules themselves.The inferenceengine 
of the rule-based  system  tests the pre'mise-part by matching 
itagainstthefactualknowledgeintheSTM(matchingcyc1e). 
If it succeeds, the action-part of the rule is executed result- 
ing  in some  changes to  the STM (firing cycle).  The engine 
then goes back to the matching cycle.  There may be more 
than one rule  which succeeds in matching and the infer- 
ence engine then invokes a conflict resolution mechanism 
to decide which  rule shall1 be used. 

B. Frame-Based  System 

In the rule-based system, factual knowledge is stored in 
the STM without regard to relationships between different 
objects.  There are, however, relations between the objects 
of many problems and a frame-based knowledge repre- 
sentation allows the user to set up and make  use of these 
relationships. 

For  example, consider the objects of a substation such 
as breakers,  switches,  buses, transformers, and transmis- 
sion lines. Several objects comprise a substation, and a set 
of substations  becomes an  area. Depending on the status 
of individual breakers and switches,  buses  may be split  or 
de-energized. Transformers and lines may be connected, 
open-ended, or de-energized depending on the status of 
the  terminating bus sections, etc. This is illustrated by the 
following set of frames: 

SUBSTATION FRAME: 
Name: character string 
Breakers: (pointer to breaker frame) 
Bus  sections: (pointer to bus section frame) 
Lines: (pointer to  line frame) 
Transformers: (pointer to  line frame) 

BREAKER  FRAME: 
Name: 
Duty rating: 
Terminal bus  sections: 
Status: 

LINE  FRAME: 
Name: 
Rating: 
Terminal bus  sections: 
Status: 

BUS  SECTION  OBJECTS: 
Name: 
Voltage class: 
Status: 

character string 
real constant 
(pointers to bus section objects) 
openlclosedlunknown 
determination: access-breakerdata 

character string 
real constant 
(pointers to bus section objects) 
connectedlopenendedlde-energized 
determination: line-status-algorithm 

character string 
real constant 
energizedlde-energizedlunknown 
determination: bus-section-algorithm 
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This type of structure allows an expert system that knows 
something (i.e.,  some object has been set to a value in the 
STM) about some part of  the substation (say, the status of 
a breaker) to use the frame relationships to directly  infer 
conditions of other objects in the substation (say, the status 
of a line). The Automatic Reasoning Tool (ART) expert sys- 
tem language [I41 is  an example of this  type of structure. 

C. Logic-Based  System 

The frameworks we  have dealt with so far  are appropriate 
to represent procedural knowledge such as: what to  do 
when certain conditions are met. A  different way to  rep 
resent knowledge requires one to specify “what” instead 
of “how.“ A logic-based  system provides us with such 
means. Prolog i s  a programming language to represent a 
“what”-type knowledge based on predicate calculus [15]. 

For  example, the following Prolog statement might be 
used in an expert system to guide operators in system  res- 
toration: 

restoration-required( X, yes ) + 

component( X ), 
charge-state( X, Y ), =I=( Y, is-charged), 
fault-state( X, Z ), =/=(Z, is-faulted). 

This  example  states what must be true for object X in order 
for it  to have a restoration requirement of “yes.”The  state- 
ment says that X must be a component and that X is not 
charged and is not faulted. 

Logic-based systems  have  an  advantage when specifying 
system requirements, but they have adisadvantage in spec- 
ifying procedure-oriented knowledge. 

D. How Expert  Systems Differ from Numeric Methods 

A  good illustrat;on of the difference between expert sys- 
tems  and numerical methods occurs when one tries to apply 
both techniques to the power system restoration problem. 
In the case of expert systems, a set of rules which govern 
the procedures (or specify conditions to be met in the case 
of logic-based systems) is written. The inferenceengine then 
uses the rules to  find a sequence of switchirlg actions to 
restore operation to the system.  The  same problem can  be 
posed  asan integer programming problem and  solved using 
a general-purpose integer programming routine. Two 
important points must then be considered, the generality 
and the framework of the solution. 

Generality has  advantages and disadvantages.  The  fact 
that a technique such as integer programming can  be 
applied to this  problem may not be of much benefit since 
the feasible solution space is very large and the restoration 
problem does not meet the convexity assumptions needed 
to guide the selection of alternative solutions. Further, it is 
very difficult  to define  a criterion for  optimality and, there- 
fore, the framework within which a numeric  method can 
be applied i s  limited. 

The inadequacyof numerical techniques is true for many 
other functions needed in power system operations. 
Human operators, when presented with problems, rec- 
ognize the situation and decide on a course of action in an 
all-encompassing way, implicitly taking account of  many 
factors.  Thus  we believe that the best path to solve ill-struc- 
tured power system operating problems is to construct a 
knowledge-based program that emulates human opera- 
tors. 

The strength of  AI techniques over conventional pro- 
gramming can be summarized a s  follows: 

1) flexibility: Expert  systems  are suited to solving ill- 
structured problems. Furthermore, the environment used 
to construct expert systems allows them to be prototyped 
rapidly and incrementally so that many alternatives and fre- 
quent updatings can  be tried. 

2) High Performance:  Expert  systems try to implement the 
level of performanceexhibited bya person with recognized 
expertise in the  problem domain. 

3) Understanding:  Expert  systems  can explain the  line of 
reasoning  used as well as the contents of the knowledge 
base. This is a key element when the designer  debugs the 
system and increases the confidence of the user. 

IV. DEVELOPMENT OF AN AI APPLICATION 

The development of AI programs usually involves dif- 
ferent procedures than used in the development of numeric 
programs. To illustrate this difference we review an appli- 
cation that deals with the diagnosis of power system faults 
and is constructed using both numeric and AI programs. 

The problem is to identify a faulty element in a power 
system by observing the relay and circuit breaker tripping 
signals.  Fig. 3 illustrates a  rough outline for a conventional 

I 

r I I CODING I 

I 
Fi 3. The  “pipeline  model’’ of software  development. 

program development sequence  and is referred to as the 
“pipeline model.”  This term was chosen because conven- 
tional program development usually proceeds in a fairly 
rigid sequence of steps.  As with the restoration problem 
discussed earlier, no algorithm exists for this problem. Ini- 
tial efforts are  made to design an algorithm for diagnosis. 
A document, written  in unexecutable natural language  and 
flow charts, is completed at the end of the first phase.  The 
following serves as such a sample document for system fault 
diagnosis: 

Fault  diagnosis is made  based on the relay and circuit 
breaker tripping signals. First, deenergized  circuit ele- 
ments are grouped into several  areas that are topologically 
disconnected. Then, the following diagnostic algorithm is 
applied to each  area. 

Determine protected elements o f  al l  relays which oper- 
ated in one area and calculate their conjunction. Three 
cases  are possible: 

7) If a single  element  comprises the conjunction, then 
assume the faulty element to be in that area. 
2) If two or more elements are included in the con- 
junction assume that some  relays  have not operated 
and designate one element within the area as the 
probable faulty element.  Check  the  consistency  among 
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Fig. 4. Power  system  fault  problem. 
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the  assumptions, possible unoperated relays, and 
measurements until the designated element is 
accepted or eliminated. If eliminated try another ele- 
ment. 
3) The third case involves no elements in the con- 
junction and results from more than double ,faults 
within that area or some relay  misoperations. Find a set 
of active relays so that the set of protected elernents 
has a nonempty conjunction. I f  successful,  applry the 
diagnosis algorithm to each  set, otherwise assume relay 
misoperation. 

Now  coding  the  algorithm is begun.  The algorithm  might 
be written  in a system description language  and i ts  source 
code compiled into Fortran source  code.  This is followed 
by the usual compile, load, link, and run sequence which 
requires repeated  changes to the program source code and 
may  even require changes to the system description itself. 

The human resources to accomplish this task  are esti- 
mated to be eight man-months for the first phase, four man- 
monthsforthesecond,andsixman-monthsforthelast.The 
total amounts to one and a half man-years.  The final Fortran 
source code is  estimated to be about 15 thousand lines and 
will  run  in about 10 son a 32-bit  process computer to diag- 
nose a fault as shown in Fig. 4. 

The major human resource is  needed during the design 
and debugging of the algorithm. This is easily understood 
sincethediagnosisalgorithm cannot bedescribed in a com- 
pact way. As it i s  an ill-structured problem, one could not 
finish a design document which specified the  algorithm 
completely. This results in missing specifications, incorrect 
code, and frequent modifications as the design becomes 

clearer.  This problem is made  worse bythe fact that numeric 
programming languages  are  less  readable and less under- 
standable when applied to knowledge-intensive problems. 

The experience in applying an expert system to the same 
problem is quite different. The software development par- 
adigm is illustrated in Fig. Sand iscalled the"rugbymode1." 

Fig. 5. The  "rugby  model" of AI software  development. 

As in the pipeline model shown in Fig. 3, there are  design, 
coding, and debug phases. However, they are strongly 
interrelated in the rugby model and rigid sequencing of 
phases is not intended. The output  of the design phase is 
not a document but a knowledge base that can  be executed 
"asis"onthecomputer.Inotherwords,thegoalofthefirst 
phase is to prototype  the  algorithm as quickly as possible 
(rapid prototyping). As it i s  executable on a computer, both 
user and developer can observe how it works at  an early 
stage of the project. If the  prototype meets requirements, 
the knowledge base is transported to  the target machine 
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without changes. If it does not, some  changes will be made 
during its transport to  the target machine. 

The actual human resource needed to apply expert sys- 
tem techniques to the fault identification  problem was three 
quarters of a man-year. Most of this time was spent in  the 
first phase. A sample of the knowledge base written  in  the 
OPS5 rule base language is shown in Fig. 6along  with a nat- 
ural language description of the rules. 

(p rda-for,locJ,backup-protection 
0 

0 

0 

(protection ^relay-typo  dz 
'pro-type local 
-id <xl> 
^location-at <yl> 
'objaot <Z> 
0 
0 1 

(protectia 'rrhy-type dz 
^pro,type local 
'id <x2> 
l̂ocation,at ( <y2> <> <yl> } 

'object <Z> 
0 

0 1 
fault-information 
' a r *_rrky  nil 
'bockup-rahy  dz 
'spec  local-backup-protection 
'fwlt-at <Z> 

0 1 
0 

1 
ubich mems: 

"If the  back-up  r&y <xl> of type dz ot the lo.oation <yl> 
that protecta tho eI.nnnt <L> ia opuated d 
the  back-up  relay <x2> of type dz at tbo location <y2> 
that protecta tho elemnt <z> is operated and 

then tho fault h concluded at tho ohment <I> md 
<y2> h not q u a l  to <yl>. 

it is clawad by locd back-up  protoction." 

Note: The following  notation  is assumed. 
(1) All syntax fo lowa the OPS5 language [l!].. 
(2)  An attribute is  preceded  by the symbol ". 
(3) A  variable ia quoted  by  the  symbols < ond >. 

Fig. 6. Rule-based  representation of diagnosis  knowledge 
and  its  meaning in  natural English. 

Although it is still early in the development, experience 
in applying AI technology to the diagnosis process has 
shown benefits to  both  utility companies and manufac- 
turers. To utilities, the new software promises advanced 
automation of power system operations never possible 
before. To the manufacturer AI has great potential in  help 
ing  to  control  the costs of an ever-increasing demand for 
more complex software. 

V. IMPLEMENTING AI IN ENERGY MANAGEMENT SYSTEMS 

Implementing AI in an EMS is more difficult than adding 
a new application program written  in an engineering lan- 
guage  such as Fortran. AI programs are generally written 
in special  languages  because of the needs for symbolic pro- 
cessing and in some  cases these  languages require special 
hardware. 

Most AI development work is currently done in Lisp or 

Prolog.  However, it is unclear at this time whether these 
languages  are the best to use in implementation of AI into 
EMS systems.  As discussed in [16], there are  basically two 
approaches that can be taken: 

1) Implement AI programs in languages  such as  Pascal 
or C that contain many of the necessary language  features 
needed in AI programming. This is illustrated in Fig.  7(a). 
The alternative illustrated in Fig. 7(b) would implement the 
AI programs directly in Lisp on conventional EMS hard- 
ware.  This approach suffers,  however, in that such hard- 
ware is often not efficient at running programs written  in 
Lisp. 

STANDARD EMS  HARDWARE 

AI PROGRAY 

FORTRAN 
WRITTEN I L M R W :  

REAL TYE OS I 

to AI PRoGaUls STANDARD EMS H A R D W A R E  

2) Attach special hardware to  the E M S  that runs Lisp or 
Prolog efficiently as illustrated in Fig.  7(c). 

The decision is further made difficult by the fact that AI 
development thrives best in a "prototyping"  environment 
which may not necessarily be the same environment as the 
"delivery" environment. 

Going with  the first approach allows the AI programs to 
interface directly with existing database, display,  applica- 
tion, and communication software but requires rewriting 
(or translating) the programs if the development language 
is different from the delivery language.  The  second 
approach eliminates the rewriting  or translating but adds 
the problems of communications between two different 
processors. 

WOLLENBERG AND SAKAGUCHI: AI IN POWER SYSTEM OPERATIONS 1683 



VI. POSSIBLE APPLICATIONS OF AI TO POWER SYSTEM 
OPERATIONS 

References  [16] and [ I 7  list various power system oper- 
ations problems as potential areas for the application of AI 
in energy  management systems. Talukdar and Cardozo [ I 7  
make a su bjective classification of the various problem areas 
according to one of four metrics: operating cost savings, 
capital cost savings, improved quality of service, and gen- 
eralizability. In this paper  we  make our own  predictions as 
to the problems most needing AI attention and  these  are 
gathered into three groups labeled real-time control, oper- 
ations planning, and operator training. 

A. Real-Time Control Problems 

7) Alarm Processing:  The alarm  processing problem is 
really an extension of the diagnosis problem. When a seri- 
ous disruption occurs on the power system, operators can 
be overloaded with alarm messages.  Because many of the 
alarm messages  are redundant or present information 
related to the same event the operators may  have difficulty 
in understanding precisely what has happened. The  use of 
AI to intercept alarm messages and  present a concise  diag- 
nosis is now under active development in several organi- 
zations, see [2], [3], [18]-[20]. 

2) Switching Operations:  Statistics  show that about 40 
percent of the tasks  at a power system control center are 
related to operations on circuit breakers  and line switches. 
Therefore, theautomation ofthesetasks should benefit sys- 
tem operators. One potential application is the automatic 
generation of switching sequences.  Some work has been 
done on verification of the switching sequences,  [21]. 
Another application is  the  identification and isolation of 
faulted line sections as shown in [22] and 1231. 

3) Voltage Control: Incorporation of static optimization 
techniques such as an Optimal Power Flow (OPF) is com- 
mon for new control centers which desire to  control the 
system voltage profile. However, the control actions  rec- 
ommended by the OPF do not take account of the future 
load prediction  or past history of control actions  and may 
proveverydifficultto implement since manyof thecontrols 
require manual entry by the operator. Liu and  Tomsovic [5] 
address this problem. 

4) Restoration  Control: A large-scale blackout may hap- 
pen on a power system, although quite  infrequently. The 
fact that blackouts happen infrequently makes the oper- 
ator’s job that much harder because  of the limited exposure 
to solving the problem of restoring the system. As a result, 
most control centers have restoration plans  and attempt to 
train operators in restoration using training simulators. 
However, the number of possible ways to restore a power 
system is very  large  and can  change depending on the state 
of critical components at the time the blackout occurs. TO 
this end, a system which supports operators by giving them 
timely guidance and provides them with a tool for short- 
term operations planning is quite desirable. AS shown in 
[I], AI software is essential in constructing such a system. 

B. Operations Planning 

5) Load  Flow  Planning:  Load flows are run by system 
operators to determine effects of planned changes to the 
system and to help  the operator study appropriate alter- 

natives should equipment  loading  fall outside appropriate 
operating limits. An intelligent and friendly interface to  the 
load flow program will help  the operator in setting up cases 
to be run, interpreting  the  resultsof solved cases, and espe- 
cially in how to interpret results if the load flow fails to con- 
verge.  Fujiwara et a/. [6] describe an early effort  which 
proved effective in developing an intelligent load flow 
interface. 
6) Unit Commitment: One of the problems encountered 

in the use of unit commitment programs is the  difficulty of 
expressing all the constraints that operators must  meet in 
scheduling units. Present practice in many control centers 
with  unit commitment programs is to  run the program and 
then alter the resulting schedule to meet constraints not 
included in the program. Mokhtari et a!. [24] describe an 
expert system that was developed to aid operators in adjust- 
ing the input data to the unit commitment program so that 
the resulting schedule  meets all scheduling constraints in 
an optimal way. \ 

C. Operator  Training 

7) Personal  Tutoring:  Large-scale training simulators are 
installed in power system control centers to enhance oper- 
ators’skills, [25]-[28]. One point of view states that the oper- 
ator acquires  these skills through the efforts of  classroom 
instruction and over-the-shoulder advice  of a training 
instructorwhile solvingdifficult operating problemson the 
simulator. Another point of view adds the capability of hav- 
ing the training simulator provide custom-tailored advice 
for a specific operator and a specific training situation. The 
authors  of [29] and [30] describe such training facilities using 
AI techniques. 

8) Scenario Building: Another aspect of operator training 
is the need to provide adequately difficult  training scenario 
cases for the training sessions.  These  scenarios need to be 
made difficult enough and specific enough so that targeted 
levels of skill can  be  reached in each  aspect of power system 
operation. Building such  scenarioscan bequitedifficult for 
training instructors and the research reported in [31] 
describes an expert system to allow the  instructor to  build 
a scenario given a specific level of difficulty for the training 
exercise  and the type of problem that is to be presented to 
the operator. 

VII. CONCLUSIONS 

The need for  the application of AI technology to power 
system operations has been analyzed. Some initial  work 
done in this area is reviewed to show how it differs from 
and what its strengths are  over conventional numeric pro- 
grams.  We believe that this  growing technology will have 
a significant impact on  future EMS design and will allow a 
level of system automation unattainable with present tech- 
niques.  However,  several technological barriers have to be 
surmounted before this takes  place. 

The inference mechanisms that we  foresee operating in 
an EMS must perform at very high speed to be useful in a 
real-time environment. In  the short run, this  high  perfor- 
mancewill beaccomplished by improvements in thedesign 
of software. In the  long run, new computer architectures 
will be developed that more closely match the needs for AI 
programs. In addition, we recognize that the usefulness of 
AI programs  depends strongly on the  quality of the  knowl- 
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edge base built  into  the system. Thus we must be able to 
acquire knowledge efficiently to  be able  to  take the best 
advantage  of AI. The  automatic  acquisition  of such a  knowl- 
edge base is discussed in [32] but its state is still primitive 
and  knowledge  engineers skilled  in  this  area  are  absolutely 
necessary. 

The  knowledge of how  to  run  a  power system is resident 
in the  engineers  and  managers  of  the  electric  utility  com- 
panieswhilethecomputertechnologytobuildanAlsystem 
belongs to suppliers. Therefore, close cooperation  and  joint 
development projects  are  absolutely necessary to reach 
successful implementations.  Finally,  people  having  the 
multidisciplinary skills of power system engineering,  com- 
puter science, and  cognitive science must be trained  for 
such  tasks. 
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