
XBee Cookbook Issue 1.4 for Series 1 (Freescale) with 802.15.4
Firmware

John Foster

April 26, 2011

2

Contents

1 Features 1-1

2 Electrical Specifications 2-1
2.1 Pinout 2-1
2.2 I/O Lines 2-1

2.2.1 All I/O Lines 2-1
2.2.2 All Inputs 2-2
2.2.3 Digital Inputs 2-3
2.2.4 Digital Outputs 2-3
2.2.5 Analog Inputs and VREF 2-3
2.2.6 Analog Outputs 2-3
2.2.7 I/O Line Passing 2-4
2.2.8 Serial Lines 2-4
2.2.9 Pin 5 –RESET . 2-5

2.3 Voltage Level Conversions 2-5

3 Operation 3-1
3.1 Version and Device Information 3-1
3.2 Module Mode 3-1

3.2.1 Transparent Mode 3-1
3.2.2 API Mode 3-1

3.3 Module State 3-2
3.3.1 Idle State 3-2
3.3.2 Sleep State 3-2
3.3.3 Command State 3-2

3.4 Flow Control 3-3
3.4.1 Hardware Flow Control 3-3
3.4.2 Software Flow Control 3-3

4 Networking 4-1
4.1 Network Types 4-1
4.2 NonBeacon 4-1
4.3 NonBeacon w/Coordinator 4-1
4.4 Transmission Modes 4-1
4.5 Collision Avoidance 4-1
4.6 MAC Mode 4-2
4.7 Network Addressing 4-2
4.8 Network Identification and Scanning 4-2
4.9 Network Association 4-3
4.10 Encryption 4-3
4.11 Power Levels 4-3

5 API Packets 5-1
5.1 All Packets 5-1
5.2 Modem Status Packet 5-1
5.3 Local AT Command Packets 5-2

i

ii CONTENTS

5.3.1 AT Command 5-2
5.3.2 AT Response 5-2

5.4 Remote AT Command Packets 5-3
5.4.1 Remote AT Command 5-3
5.4.2 Remote AT Response 5-3

5.5 Input Line States 5-4
5.6 Transmit Request 5-4

5.6.1 TX Request 5-4
5.6.2 RX 5-5
5.6.3 TX Status 5-5

A Baud Rates and their Accuracy A-1
A.1 System Clock Frequency and UART Clock A-1
A.2 Available Baud Rates A-1
A.3 Serial Line Receiver Operation A-2
A.4 Signal Quality A-2
A.5 Solution at 115,200 baud A-2
A.6 Discussion of 57,600 Baud A-3
A.7 Baud Rate Accuracy on Other XBees A-3
A.8 Historical Note A-3

B A Study of Custom Baud Rates on the Series 1 XBee B-1
B.1 Introduction B-1
B.2 The Calculation of Percentages B-1
B.3 Standard Baud Rates B-2
B.4 How Close do Baud Rates Need to Be? B-2

C Using X-CTU under Linux C-1

D Change Log D-1
D.1 Changes D-1

D.1.1 Changes in issue 1.4 (published 26 Apr 2011) D-1
D.1.2 Changes in issue 1.3 (published 9 Mar 2011) D-1
D.1.3 Changes in Issue 1.2 (published 7 Mar 2010) D-1
D.1.4 Changes in Issue 1.1 (published 26 Jan 2010) D-2
D.1.5 Issue 1.0 D-2

Index 1

Chapter 1

Features

The XBee and XBee Pro are plug-in replacements for each other. The difference between them is that the XBee Pro
operates at higher power and has a more sensitive receiver. Table 1.1 shows the relevant figures. Note that in Europe the
output power of the XBee Pro must be restricted to 10dBm. The current of 137mA corresponds to that level.

In each case, the RF data rate is 250Kbps and the serial I/O rate is selectable between 1200 and 115200 baud.

Item XBee XBee Pro
Range, indoor/urban 30m 100m
Range, outdoor/line of sight 100m 1 mile
Transmit power 1mW 100mW
Receiver sensitivity -92dBm -100dBm
TX current (@3.3V) 45mA 137mA
RX current (@3.3V) 50mA 55mA
Power-down current < 10µA < 10µA
Sequence channels 16 12

Table 1.1: Differences between XBee and XBee Pro.

1-1

1-2 CHAPTER 1. FEATURES

Chapter 2

Electrical Specifications

2.1 Pinout

If the XBee is viewed from the top and with the bevelled end facing north, then pins 1 to 10 run down the west side from
north to south, and pins 11 to 20 run up the east side from southto north. Table 2.1 shows the pinout. Pins that are not
used should be left disconnected.

2.2 I/O Lines

2.2.1 All I/O Lines

Eight of the I/O lines are fitted with pull-up resistors whichcan be enabled or disabled with thePR parameter. This is
an 8-bit mask, where a 0 disables the pull-up and a 1 enables it. Table 2.1 gives the bit positions in the column labelled
PR. The default value is 0xff.

I/O pins are configured using theDn parameter. The command is followed by the pin code from the AT column of
Table 2.1, and the command assigns a mode code which is 0 to disable the line, 1 to enable the line’s special function (see
next para), 2 for analog input, 3 for digital input, 4 for digital output low and 5 for digital output high. For example, the
command to set AD1/DIO1 (pin 19) as an analog input would be ATD1=2.

I/O lines with special functions have those functions enabled by setting theirDn parameter to 1. These lines are line
7 (CTS), 6 (RTS) and 5 (Associated indicator). For lines 7 and5, this is the default state. For line 6, the default state is
disabled. Changes made via the Dn parameter become effective the next time an AC command is issued.

Under firmware version 1084, any attempt to read the Dn parameter for0 ≤ n ≤ 4 just got an “ERROR” return. From
version 10C8 the response is as it should be.

The Associated indicator output will blink a LED while the module is associated.
To disable any I/O line, set its Dn parameter to 0.

I/O Data Packet

TheIS parameter forces a read of all enabled inputs and outputs (analog or digital) with the data being returned through
the UART. If no inputs are enabled, the command returns “ERROR”. The IS command can take a parameter, with a value
in the range 1 to 0xff and a default value of 1. The product manual is silent on the question of what the parameter is
for, but when I asked Digi they replied that the parameter hasno purpose and should be removed in a future firmware
release. Under firmware version 10C8 an attempt to read the ISparameter will return “ERROR” unless at least one line
is configured as a digital or analog input. In API mode, the data will be returned as a pair of packets. The first will be a
status return, and presumably an error status means the second packet won’t be present. The second packet is an I/O data
packet.

An I/O data packet is also sent when theIC parameter has any bits set. This parameter enables change detection
on DIO lines 7 to 0 when the corresponding bits are 1. Any change on any enabled line first causes transmission of any
queued data, and then causes the DIO data to be transmitted. The default value for the IC parameter is 0x00. This packet
will report only digital line states.

A module receiving a packet sent because of the IC parameter will respond in one of two ways:

2-1

2-2 CHAPTER 2. ELECTRICAL SPECIFICATIONS

Pin Name Direction Description AT PR
1 VCC – Power supply
2 DOUT Output UART data out
3 DIN / CONFIG Input UART data in 7
4 DO8 Output Digital output 8
5 RESET Input Module reset (at least 200nS)
6 PWM0 / RSSI Output PWM output 0 / RX signal strength indicator
7 PWM1 Output PWM output 1
8 (reserved) Do not connect
9 DTR / SLEEPRQ / DI8 Input Pin sleep control line or digital input 8 D8 6
10 GND – Ground
11 AD4 / DIO4 Either Analog input 4 or digital I/O 4 D4 0
12 CTS / DIO7 Either Clear to send flow control or digital I/O 7 D7
13 ON / SLEEP Output Module status indicator
14 VREF Input Voltage reference for AD inputs
15 Associate / AD5 / DIO5 Either Associated indicator, analog input 5 or digital I/O 5D5
16 RTS / AD6 / DIO6 Either RTS flow control, analog input 6 or digital I/O 6 D6 5
17 AD3 / DIO3 Either Analog input 3 or digital I/O 3 D3 1
18 AD2 / DIO2 Either Analog input 2 or digital I/O 2 D2 2
19 AD1 / DIO1 Either Analog input 1 or digital I/O 1 D1 3
20 AD0 / DIO0 Either Analog input 0 or digital I/O 0 D0 4

Table 2.1: Pinout for XBee and XBee Pro. The AT column gives the tail of the Dn command for configuring the pin, and
the PR column gives the bit number in the PR command for configuring the pull-up resistor (see section 2.2.1). A note in
the 1xAx product manual says that pin 4 (DO8) is unsupported,and the 1xEx product manual says the same.

1. If the receiving module’sIA parameter is set to enable control by the sending module by holding the sending
module’s address or by holding the “accept all” value, then it will update its own I/O wires from the data in the
packet.

2. If the receiving module is not set to update its outputs, then the I/O packet is transmitted through the receiving
module’s UART.

When an IO Data Packet is sent in transparent mode, all bytes are first converted to ASCII. Then the values are
reported, each terminated by a carriage return. The order is:

1. The number of sample sets to follow. Items 2 to 4 in this listconstitute one sample set.

2. The channel indicator with a bit set for each enabled inputor output. This is a 16-bit word, with the most significant
byte sent first. In the high byte, bit 7 is not used and bits 6 to 1are set if the data will include samples from ADC5
to ADC0 respectively. Bit 0 of the high byte is set if the data will include the state of line D8. In the low byte, bits
7 to 0 correspond to lines DIO7 to DIO0.

3. The DIO data (line state) for each enabled digital input oroutput, if there are any enabled digital inputs or outputs.
This is a 16-bit quantity, with the D8 state in bit 0 of the msb and bits 7–0 in the lsb.

4. The ADC data for each enabled analog input, in ascending order of line number. Each is an unsigned 16-bit quantity,
with the 10-bit value in the low-order 10 bits.

5. The data is terminated by an extra carriage return.

2.2.2 All Inputs

The IR parameter sets or reads the sample rate. When set to a value other than 0, the module will sample all enabled
inputs at time intervals given by the parameter value. The time unit is mS, and the maximum value is 0xffff. The default is
0. A note in the Digi product manual says that sampling at a rate of more than one sample per 20mS is not recommended.

The IT parameter sets or reads how many samples (max) will be transmitted per packet. Its value is in the range 1
to 0xff, with 1 as the default. When sleep modes are enabled anda sample rate (IR) is set, the module will remain awake
until IT samples have been collected.

2.2. I/O LINES 2-3

2.2.3 Digital Inputs

Digital inputs will recognize a voltage lower than0.35∗VCC as low, or greater than0.7∗VCC as high. The input leakage
current for any input voltage between 0 and VCC is typically 0.025µA, max 1µA. The input leakage current spec is the
same, whether or not the input is configured for high impedance. To configure I/O linen as a digital input, use theDn
parameter with value 3.

2.2.4 Digital Outputs

When a digital output is in the low state, it can sink up to 2mA with the voltage level being no higher than 0.5V. In the
high state, it can source 2mA with the voltage being no lower than VCC− 0.5. A Digi reply quoted in the 802.15.4 forum
says that the outputs can source about 5mA each, with an overall limit of 20mA total.

To configure I/O linen as a digital output, use theDn parameter with value 4 for low voltage, and 5 for high voltage.
Line 8 cannot be used as a digital output in firmware versions earlier than 1xEx.

The IO parameter sets the output levels for lines configured as digital outputs. It’s an 8-bit mask. The mask value
overrides the Dn parameter, which remains as the default. Under versions 10C8 and 10E6 any attempt to read this
parameter simply returns “OK” in either AT or API mode, so it must be treated as write-only. Setting the IO parameter
has immediate effect.

The IO parameter has a curious side effect: if you give an IO command without a parameter value, it seems to behave
as though you passed a value of zero, setting all digital outputs to their low state. Once in this state you can’t restore an
output whose Dn parameter was set to high just by re-issuing its Dn command. You have to set it low and then set it
high again. I’ve observed this behaviour on a remote XBee using remote AT commands via API under firmware 10E6.
Specifically, the DIO4 line was the one I observed. More extensive testing is left as an exercise for the reader.

2.2.5 Analog Inputs and VREF

The voltage on any analog input pin must be at least VSSAD− 0.3 and at most VDDAD +0.3. That’s the electrical limit,
not the range for the conversion to be valid. Any analog inputmust be filtered, with a capacitor in the range0.01µF to
0.1µF connected between the input pin and VREF. Analog input pins must be driven from a source whose impedance has
a real component of at most 10kΩ. An analog input pin whose voltage is VREF will be read as 0x3FF, as will any higher
voltages.

To configure I/O linen as an analog input, set theDn parameter to 2. Only lines 0 to 5 can be used in this way.
The voltage supplied to the VREF pin must be at least 2.08V andat most VDDAD. The module will draw 200µA

from the source when A-D is enabled, or at most 0.02µA when A-D is disabled or the module is in sleep mode.
Historical note: According to the 1xAx documentation, the XBee Pro has an internal voltage reference at VCC, and

the AV parameter, if 1, causes the internal reference to be used instead of theVREF pin. The default is 0. If the AV
command is issued on a non-Pro Xbee, it will return “ERROR”. BUT a note in the hardware forum from Travish (a Digi
support person) says that the internal reference was removed in the 1x9x beta versions, and the AV command should have
been removed from the documentation. So all Series 1 XBees now have to have an external reference.

2.2.6 Analog Outputs

The PWM period is 64µS, and there are 1023 (0x3ff) steps within it. To put that another way, the PWM outputs deliver a
square wave at a frequency of about 15.6KHz with a duty cycle that can be varied in 1024 steps between 0% and 100%.

ThePp parameter sets the function of the PWMp pin. A value of 0 disables it, 1 sets it for RSSI and 2 sets it as a
PWM output. The default is 1 for P0 and 0 for P1. In RSSI mode, thePWM output indicates received signal strength.

TheMp parameter is the PWM output level for the PWMp pin. The value range is 0 to 0x03ff and the default is 0.
The parameter is write-only in firmware versions up to at least 10E6: any attempt to read it returns ”OK” status but no
value. The product manual, however, says you can set or read it.

TheRP parametergives the pulse duration for either PWM pin, when in RSSI mode.The duty cycle is updated with
each received packet and is shut off when the timer expires. Timer values are in the range 0 to 0xff and the time unit is
100mS. The default value is 0x28. See the product manual for further details.

A cautionary note on analog outputs: with versions of firmware up to at least 1xE6, any change of setting to a DIO
pin state or to sample rate, change detect etc will as a side effect reset the analog outputs to 0. Thus after any such change
any active analog output values must be re-asserted. (Thanks are due to Brarb for posting this info on the forum.)

Further note: in Feb 2010 Carettjc reported in the forum thatwith firmware 10CD the analog outputs were not giving
the advertised PWM signals. An upgrade to 10E6 led to success.

2-4 CHAPTER 2. ELECTRICAL SPECIFICATIONS

463f 464a
IR 5 secs IA 0xffff
IT 1
DH 0
DL 0x1234 MY 0x1234
D0 output
D1 input D1 output
IC 0x02 T1 2 secs

Table 2.2: I/O line passing between two XBees, using periodic sampling. The top line shows the last four hex digits of
their serial numbers. The one on the left is passing its DIO1 input to the one on the right. On the left, output DIO0 is
wired to input DIO1.

2.2.7 I/O Line Passing

I/O line passing creates “virtual wires” between two Xbees,so that selected inputs on one (the source) are reflected as
output states on the other (the destination).

To enable I/O line passing, the source must from time to time transmit the required input values to the destination.
There are two possible ways to do this:

1. Use theIR parameter and theIT parameter to set a sampling rate. Table 2.2 shows the settings for a pairof
XBees using this method.

2. Use theIC parameter to enable change detection on the input lines.

TheIA parameter controls permissions for other modules to order this moduleto change the states of its output lines.
The value is a 64-bit module address, and only that module is allowed to change the line states. The value may also be
set to 0xffffffffffffffff (the default), which will prevent any other module from changing the lines, or to 0xffff whichwill
allow any other module to change the lines. The X-CTU help boxsays this is for I/O line passing. It doesn’t mention
remote AT commands.

TheTn parameter (n in 0–7) sets timeout values for output lines whose values areset through I/O line passing (not
through the IO parameter). When any such line is set to its non-default value, its timer is started and the line will revert
to the default value as set by the Dn parameter when the timer expires. The values are in the range0 to 0xff and the time
unit is 100mS. The default value is 0xff (25.5 seconds). If the timer value is 0, lines retain their levels indefinitely.

ThePT parameter is a common timeout value for both analog outputs. When its value is non-zero, each time a PWM
level is set through I/O line passing, the timer will be restarted. When it expires, the PWM lines will be reset to 0V. Timer
values are in the range 0 to 0xff and the time unit is 100mS. Thedefault value is 0xff (25.5 seconds).

TheIU parameter controls what happens to line state packets. It defaults to 1, which means that any line state packets
received by the XBee will be sent through the UART to the XBee’s controller and will not affect local output lines. If IU
is set to 0, received line state packets will affect local output pins and will not be passed through the UART.

2.2.8 Serial Lines

The serial lines operate at logic levels, with the idle statebeing high voltage. Each data byte is transmitted with one start
bit (low voltage), eight data bits (low voltage for 0, high for 1, lsb first), an optional parity bit (but none by default) and
one stop bit (high voltage). The baud rate is controlled by theBD parameter, which defaults to 3 (9600 baud). Table 2.3
shows the possible values. For non-standard baud rates, setthe BD value in the range 0x08 to 0x1c200 and then read back
the BD value. The value read back will be the actual baud rate achieved. The baud rate setting will not change until AT
mode is exited using theCN command, and the module has returned the “OK” response.

Operation at 115200 baud is flaky with the standard settings,as documented in a forum topic “XBee Series 1 not
working well at 115200 baud”, around September 20081. The main suggestion was to use two stop bits. Other suggestions
were to operate the host at 112000 baud or 111111 baud, using one stop bit. The latter value can be achieved on a
microprocessor host by dividing down the clock if the clock has a round value: for example, if the clock is 1MHz, divide
by 9. See Appendix A for a lot more information on this topic.

1Currently (Jan 2010) a pinned topic in the 802.15.4 forum.

2.3. VOLTAGE LEVEL CONVERSIONS 2-5

BD Baud
0 1200
1 2400
2 4800
3 9600
4 19200
5 38400
6 57600
7 115200

Table 2.3: BD command values and standard baud rates.

Parity settings are controlled by theNB parameter. Values are in the range 0 to 4, where 0 means no parity, 1 means
even, 2 means odd, 3 means mark and 4 means space. The default is 0. Note that setting NB to 3 effectively causes the
XBee to send two stop bits.

For details of flow control, see Section 3.4 on page 3-3..

2.2.9 Pin 5 –RESET

This pin has a 50kΩ pull-up resistor within the module.

2.3 Voltage Level Conversions

There are two main cases where voltage level conversions areneeded. One is where the XBee serial lines are to be
connected to an RS-232 port, and the other is where any lines including the serial lines are to be connected to a 5V device
such as a PIC microcontroller.

For the RS-232 case, the MAX232 family of chips does the job just fine.
For the 5V case, a couple of resistors connected as a voltage divider is enough to connect a 5V output to an XBee

input. An XBee output will normally need a couple of transistors for the conversion, or a single transistor if you don’t
mind the signal being inverted. There are also chips available for this.

When driving a 5V input from an XBee it’s worth checking the spec for the 5V circuit – some may be compatible
with 3.3V logic. At least one post in the forum has suggested that the PIC is an example of a circuit that does need level
conversion.

2-6 CHAPTER 2. ELECTRICAL SPECIFICATIONS

Chapter 3

Operation

3.1 Version and Device Information

TheVR command returns the firmware version of the RF module, as a value in therange 0 to 0xffff.
TheVL command used to return a verbose description of versions, includingthe application build date, MAC, PHY

and bootloader versions. Under firmware version 10C8, this command cannot be used as an API command. If you try it
as a local command it returns error status, and as a remote command it gets no response at all. In fact, the 1xEx product
manual says the command was removed from firmware version 1xC9 and all later versions.

TheHV command returns the hardware version of the RF module, in the range 0 to 0xffff. On my ordinary XBees it
returns 1742 (1744 on a few that I bought more recently), and on the Pro it returns 1842. A forum post by gworle of Digi
says that plain series 1 XBees will return 17xx and Pros will return 18xx. For the series 2 modules, a plain one will return
19xx and a Pro will return 1axx.

The DD command appears to be new in firmware version 1xCx. According to X-CTU, it returns the “device type
identifier value”. On my XBees the value is 0x10000, for both the normal and Pro versions. The DD command is not
mentioned in the 1xCx product manual, nor in the 1xEx manual.

TheCK command was introduced in version 10e4 according to the firmware revision history. It isn’t mentioned in
the product manual for 10e6. It returns the checksum of the configuration in RAM, as an aid to determining whether the
configuration has changed. The value is a single byte.

3.2 Module Mode

The module mode controls how the XBee responds to data received via its UART. There are two possible modes: transpar-
ent (the default) and API. In API mode there are two sub-modes, allowing data to be sent as straight binary or with certain
characters escaped. TheAP commandselects the mode. A value of 0 (default) selects transparentmode, 1 enables API
mode, and 2 enables API mode with escaped control characters.

3.2.1 Transparent Mode

Transparent mode is enabled by default. Any RF data receivedby the module will be transmitted out through the UART,
and any data received from the UART will be transmitted over RF. The module has a limited buffer size for this data (100
bytes), so with high transfer rates flow control must be implemented.

TheRO commandaffects the packetization timeout. Its value lies in the range 0 to 0xff, and it gives the number of
character times to wait after the last character was received, before transmitting the received data as a packet. When the
value is 0, all characters received are transmitted immediately. The default value is 3.

3.2.2 API Mode

In API mode, all data entering and leaving the module is contained in frames that cause operations or events within the
module. Frames received through pin 3 (DI) are called Transmit Data Frames. Frames sent out through pin 2 (DO) are
called Receive Data Frames.

3-1

3-2 CHAPTER 3. OPERATION

From the command state, theAP commandenables or disables API mode. A value of 0 disables it, 1 enables it, and
2 enables it with escaped control characters. The default value is 0. Operation with escaped control characters would be
necessary if using XON/XOFF flow control.

3.3 Module State

At any given time, a module is in one of five states: idle, transmit, receive, command or sleep. From the idle state it can
switch to any other state, and from any other state it can switch back to idle.

3.3.1 Idle State

From the idle state:

• Serial data received in the DI buffer will switch the state totransmit.

• Valid data received through the RF antenna will switch to receive.

• If the sleep mode condition is met, the module will switch to sleep.

• If a command mode sequence is issued, the module will switch to command.

3.3.2 Sleep State

Note that in my application so far I don’t use sleep modes. Theinformation given here is therefore sketchy compared to
what the product manual contains.

Sleep is a state in which power consumption is low. For sleep mode to be entered, sleep must be enabled using the
SM parameter, and either pin 9 (SleepRQ) must be asserted or the module must have been idle for the length of time
specified by theST parameter (Time Before Sleep). The parameter gives the time in milliseconds. It takes values in the
range 1 to 0xffff, and the default value is 0x1388 (5 seconds).

Sleep is disabled by setting SM=0. There are four other SM values: SM=1 gives Pin Hibernate, SM=2 gives Pin Doze,
and SM=4 or SM=5 give Cyclic Sleep. If SM=5, the module will wake up after the timer expires or on a pin transition.

Pin Hibernate is the sleep mode with the lowest power consumption. When it is enabled, sleep is controlled solely by
the state of the SLEEPRQ pin. The wake-up time is 13.2mS.

Pin Doze has higher power consumption than pin hibernate, but has a faster wake-up time of 2mS. It too is controlled
solely by the state of the SLEEPRQ pin.

Cyclic Sleep has the same current consumption as pin doze. Sleep is entered after a no-activity timeout given by the
ST parameter, and the module wakes after a period given by theSP parameter. While asleep, the RF module wakes
periodically to detect whether RF data is present. The SP parameter takes values in the range 0 to 0x6880, with the time
unit being 10mS. The default setting for SP is 0. The maximum value of 0x68b0 gives 268 seconds (4m28s). SP values
for the coordinator and the end devices should be equal.

For end devices that are configured for association but not currently associated, theDP commandcontrols the sleep
time, with the same unit and range as for SP but with a default of 0x3e8 (10 seconds).

When a module awakes from sleep, it will sample all active I/O lines and transmit them. If theIR parameter is set,
it will collect extra samples until the limit set by theIT parameter is reached. This automatic sampling on wakeup may
be suppressed by setting bit 1 of theSO parameter(firmware 10cx).

The 1xAx product manual says that in all sleep modes, the current consumption rises dramatically if the supply voltage
is more than 3.0V. In the 1xCx product manual, however, thereis no mention of this.

3.3.3 Command State

In the command state, incoming characters are interpreted as commands. There are two sub-states here: AT command
state and API command state.

To enter the AT command state, send the three-character sequence “+++” with a guard interval before and after it.
The guard interval is determined by theGT parameter: if it is set to 0x3e8 (the default), the guard interval is onesecond.
The time unit is milliseconds, and the value range is 2 to 0x0ce4. The three+ characters must also be sent within a time
equal to the guard interval. TheCC parameter specifies the ASCII code of the character to be recognized where ‘+’ is
written above; ‘+’ is the default.

3.4. FLOW CONTROL 3-3

When in AT command state, commands take the form of AT followedby the command name (two letters, or a letter
and a digit), followed by an optional space and then an optional hex parameter value. Each command is terminated
by a carriage return character or a comma. If the hex parameter value is omitted, the current value will be displayed.
After successful execution of a command, the module will display “OK”, or the result if the command was to display a
parameter value. If an error occurred, it will instead display “ERROR”.

TheAC command will explicitly apply changes to queued parameter values and then re-initialize the module. After
this command is given, the module will be operating according to the parameter values.

Stored values will not be retained after a reset, unless theWR command is issued. The WR command copies
parameter values to non-volatile memory. It takes a little time: don’t send any other command until the “OK” has been
received.

To restore all parameters to their factory default values, use theRE command. This command does not copy the
restored values to non-volatile memory, so use the WR commandafterwards if that’s required.

To perform a software reset, use theFR command. It will respond immediately with OK, and then perform the reset
about 100mS later. The FR command was introduced in firmware version 1x80, and is equivalent to powering off and
then on again.

To exit from AT command state, either send theCN commandor wait for a period controlled by theCT parameter.
The CT parameter is a timeout value in the range 2 to 0x1770 (10minutes), and the time unit is 100mS. The default value
is 0x64 (10 seconds). Note: before firmware version 10e4 the maximum setting was 0xffff and the 10e6 product manual
still has that figure. The change is noted in the firmware revision history.

3.4 Flow Control

Flow control is necessary on any serial line if the rate of transmission is such that the receiving buffer cannot always be
guaranteed to be emptied at a rate which prevents it from overflowing. There are two flow control mechanisms: hardware
flow control and software flow control.

• Hardware flow control is used between an XBee and its host.

• Software flow control is used between two hosts that are communicating via XBees. The XBees themselves do not
take any notice of the software flow control characters.1

Whether you need to worry about flow control at all is entirely dependent on your application.

3.4.1 Hardware Flow Control

The hardware flow control mechanism (between host and XBee) uses the RTS and CTS serial lines. The RTS line is used
by the host, to signal to the XBee that the host’s buffer is nearly full and the XBee should stop transmitting until the line
is de-asserted. In the same way, the XBee uses the CTS line to pause transmissions from the host.

When either flow control line is activated, any character already being transmitted will still be sent, and in general
more than one character may be received after the line activation. Software needs to be written in such a way as to allow
for this. It’s the reason why the lines need to be activatedbefore the respective buffers are full, instead of when theyare
full.

3.4.2 Software Flow Control

With software flow control (host to host), two ASCII characters are given special meanings. The character 0x13 (Control-
S or DC3 or XOFF) when sent across the serial link tells the other side to stop sending. The character 0x11 (Control-Q or
DC1 or XON) tells the other side to resume sending. When software flow control is in use, it follows that these characters
cannot be sent as part of the data stream.

As with hardware flow control, the programmer cannot assume that characters will stop being received as soon as the
XOFF character is sent.

1Special thanks to Digi support for digging me out when I got confused over this.

3-4 CHAPTER 3. OPERATION

Software Flow Control with API Mode

When sending API packets it isn’t possible to avoid the need toinclude the software control characters. For instance,
checksums and addresses can contain any values. Therefore the API escape mode (AP=2) exists. In this mode the
character 0x7d is defined as the escape character. When a host wants to transmit 0x11 or 0x13 it transmits the escape
character first, and then the desired character XORed with 0x20.

That’s fine so far, but now the escape character has a special meaning so it too must be escaped in the same way when
it appears in the data.

And as a final refinement, in API mode 2 the 0x7e character is also escaped whenever it appears within a packet. It is
not escaped when it appears as the first byte of the packet. This allows for recovery if any buffers do overflow in spite of
the flow control. When overflow does happen, some bytes will be lost and a receiver will usually see just part of a packet.
It can then ignore all bytes received until it sees the next 0x7e which marks the start of the next packet. One or more
packets will have been lost, but confusion is avoided.

Software Flow Control with Transparent Mode

When two XBees are being used in transparent mode for host-to-host communication, software flow control is a matter for
the hosts to arrange. If binary data is being sent (actually any data in which the flow control characters may appear), then
each host must deal with the escaping of those data characters. Since the XBees themselves attach no special meaning to
the characters sent, any escape mechanism could be used. It’s probably easiest to use the same escape mechanism as for
API mode unless there’s a convincing reason to do otherwise.

Chapter 4

Networking

4.1 Network Types

The XBee modules support two of the IEEE 802.15.4 network types: NonBeacon, and NonBeacon w/Coordinator.

4.2 NonBeacon

By default, the NonBeacon mode is enabled. This is a peer-to-peer network. It is established by configuring each module
to operate as an End Device (CE parameter set to 0), disabling End Device Association (A1 parameter set to 0), and
setting theID parameter andCH parameter to be identical for all nodes in the network.

4.3 NonBeacon w/Coordinator

For NonBeacon w/Coordinator mode, one module is set to act asthe coordinator by setting itsCE parameter to 1. Its
power-up is controlled by theA2 parameter. This network type uses Association to determine which end devices are
controlled by which coordinator.

4.4 Transmission Modes

There are two transmission modes: unicast and broadcast. Unicast is the default. It supports retries; broadcast doesn’t.
In unicast mode, a module receiving a packet will send an ACK back to the transmitter. If the transmitter does not

receive an ACK within 200mS, it will retry up to three times. These three retries are provided automatically, but theRR
commandwill set or read a multiplier: the number of times the (up to) 3retries will be repeated if necessary. The range
of the RR parameter is 0 to 6, and the default is 0. The parameter was introduced in firmware version 1xa0.

TheEA parameter gives the number of ACK failures since the counter was last reset. The counter is incremented
when the module reaches its retransmission limit without anACK having been received. When the counter reaches 0xffff
it retains that value instead of overflowing. To reset the counter, set the EA parameter to 0.

In broadcast mode, all RF modules within range will accept the transmission. No ACKs are sent, and there is no
automatic retransmission of packets. A packet is sent in broadcast mode if its destination address is DL=0xffff and DH=0.

4.5 Collision Avoidance

The modules use the CSMA-CA algorithm for collision avoidance. TheRN parameter controls the back-off exponent in
the algorithm, and has a range of 0 to 3. The 0 setting disablescollision avoidance in the first iteration of the algorithm,
and is the default.

TheCA parameter sets the detection level for collision avoidance. The parameter range is 0 to 0x50, with a default
of 0x2c. The unit is -dBm. If the energy on the channel is abovethis level, packet transmission will be delayed.

4-1

4-2 CHAPTER 4. NETWORKING

The EC parameter gives the number of times the module has avoided transmission because of collision detection
since the counter was last reset. The range is 0 to 0xffff. Whenthe counter reaches 0xffff it retains that value instead of
overflowing. To reset the counter, set the EC parameter to 0.

4.6 MAC Mode

TheMM command, introduced in firmware version 1x80, sets or reads the MAC Mode value, which is in the range 0
to 3. A value of 0 is the default, and causes the addition of a Digi header to the 802.15.4 packets. A value of 3 also adds
the Digi header, but ACKs are suppressed. In either Digi mode, duplicate packets are detected and theND command,
DN commandandRR commandare enabled. The other two modes are strict 802.15.4 modes. Mode 3 appears to have
been introduced in the 1xCx firmware.

4.7 Network Addressing

Every RF packet contains a source address and a destination address in its header. Either address may be short (16 bits)
or long (64 bits). The long address is unique to each module, and is assigned when the module is manufactured. It can be
read with theSL parameter (Serial number Low) andSH parameter (Serial number High) commands. A module will
use its long source address in packets if itsMY parameter is set to 0xfffe or 0xffff. Otherwise, the MY parameter value
is the short address that the module will use. The MY parameter defaults to 0. The 1xCx product manual says that setting
MY to 0xffff disables the reception of packets with short addresses.

When sending data to a module, theDL parameter andDH parameter determine the destination address. To use a
short address, set DL to the other module’s MY value and set DH=0. To use long addressing, set DL and DH to the other
module’s SL and SH. These are 32-bit values. DH and DL defaultto 0. The module will use DH and DL when it sends
line state packets, which are generated by the module itself. For all other packet types, addressing is either explicit in the
packet, or implicit as a consequence of the packet type.

For setting the destination address, theDN command was introduced in firmware version 1x80. It takes a Node
Identifier string as parameter (see Section 4.8), and sets DLand DH to the address of the node with that string. After the
DN command, the module then exits AT command mode. If the parameter is not specified or if there is no response within
200mS from the destination module, the command displays “ERROR” as its result. The DN command cannot be used in
MAC mode.

TheCH command sets or reads the frequency channel number used for transmission and reception. For XBee use
channels in the range 0x0b to 0x1a. For XBee Pro, use 0x0c to 0x17. The default is 0x0c. For a valuec, the channel
frequency is2.405GHz + ((c − 11) × 5MHz). (The product manual, if I read it correctly, misses out the GHz in the
equation.)

TheID command sets or reads the PAN (Personal Area Network) id. The defaultis 0x3332. Any 16-bit address may
be used. To broadcast a message to all PANs, set ID to 0xffff.

4.8 Network Identification and Scanning

From version 1x80 of the firmware, each module can store an ASCII identifier string of up to 20 printable characters. The
string must not start with a space. TheNI command sets or reads the string, and is ended when a carriage return is seen,
or when the 20th character has been entered. This string is known as the Node Identifier.

For the discovery of nodes in a network, theND commandwas introduced in firmware version 1x80. The command
reports, for each node, the MY, SH, SL, DB and NI values in thatorder. In AT command mode each value is followed by
a carriage return, and an extra carriage return follows eachnode. A final carriage return indicates the end of the response.
The ND command can also accept a Node Identifier as its parameter, in which case only that node will be reported. When
reporting, a node that doesn’t have an NI set will have a single space for the NI value. The ND command cannot be used
in MAC mode. See the product manual for more details, including the details of the response when ND is sent as an API
command. Note that ND cannot be sent via API as a remote AT command: it can only be sent from a host to its locally
connected XBee.1

1This was posted as a forum response. I see though that page 61 of the 1xEx product manual mentions the ND command in the description of the
remote AT response API packet, which would imply that maybe remote ND is now possible. But against that, the same comment appears in the 1xCx
manual and in 1xCx remote ND definitely didn’t work.

4.9. NETWORK ASSOCIATION 4-3

When performing node discovery, theNT parameter (introduced in firmware version 1xa0) sets or reads how long
the node will wait for resopnses from other nodes. The parameter range is 0x01 to 0xfc and defaults to 0x19 (2.5 seconds).
The time unit is 100mS.

Also when performing network discovery, theNO commandcontrols the network discovery options. The parameter
value is either 0 or 1, and defaults to 0. When set to 1 the local XBee will include itself in the list of discovered nodes.

TheED commandcauses an energy scan on all channels, returning the maximalenergy on each. Each energy value
is followed by a carriage return. Values of detected energy levels are in units of -dBm. Each channel’s scan time in mS is
(2d ∗ 15.36, whered is the parameter value given with the ED command and is in the range 0 to 6. The total scan time is
the channel scan time multiplied by the number of channels tobe scanned.

The SC command, introduced in firmware version 1x80, sets or reads a list of channels to scan for all Active and
Energy Scans. The list is held as a 16-bit mask. In the mask, bit 0 corresponds to channel 0x0b and bit 15 to channel
0x1a. On the XBee Pro, bits 0, 14 and 15 are not allowed. The default setting for the mask is 0x1ffe.

TheAS command(Active Scan) sends a beacon request to the network and returns a set of descriptors for the beacons
found. In firmware version 10c8, if we send the command as an API packet:

7e 00 04 08 01 41 53 62

all that comes back (given a 30-second timeout) is this incomplete packet:

7e 00 05 88 01 41 53

I haven’t tried this with later firmware versions. I’d be surprised if it was still an issue.

4.9 Network Association

TheCE command, introduced in firmware version 1x80, sets or reads the Coordinator Enable parameter. The value is 0
for an end device, or 1 for a coordinator. The default is 0.

TheSD command, introduced in firmware version 1x80, sets or reads the scan duration exponent. The product manual
gives the details.

The way in which an end device associates with a controller isset with theA1 command. See section 3.3 in the
product manual for the details. For controlling the coordinator’s association behaviour, see theA2 command in the same
section. TheAI command returns information about the status of the last association request.

TheDP parametersets the sleep period for cyclic sleeping remotes that are configured for association but not actually
associated. This period dictates when they will wake up and try again to associate. The value range is 1 to 0x6880, and
the time unit is 10mS. The default value is 0x3e8 (10 seconds). The maximum value corresponds to 268 seconds.

To force disassociation, use theDA command. This will disassociate the module and make it attempt another associ-
ation.

When an associated end point wakes from sleep, it will use theFP commandto request any messages the coordinator
may be holding for it.

4.10 Encryption

TheEE commandenables or disables 128-bit AES encryption, with parametervalues 1 or 0 respectively. When encryp-
tion is enabled, all modules will use the long form of their source addresses.

TheKY command sets the encryption key. All modules in the network must use the same key. The key is a 128-bit
(16-byte) value. The default key is 0. Once it has been set, there is no way to read it back from the module.

4.11 Power Levels

ThePL parameter controls the power level for transmission. In Europe, the parameter value must be 0 for the regular
XBee Pro, though there is also a so-called international version of the Pro available, with reduced power levels. The
international version can be identified by a ‘J’ suffix after the XBP24 part number silk-screened on the chip. Table 4.1
gives the parameter values and corresponding power levels.The default setting is 4.

The DB command returns the signal level in dB of the last good packet received (RSSI). The absolute value is
reported, so for example a returned value of 0x58 indicates alevel of -88dBm. The reported value is accurate in a range
between -40dB and the receiver sensitivity. For the XBee, values lie in the range 0x17 to 0x5c. For the XBee Pro, the

4-4 CHAPTER 4. NETWORKING

Value XBee XBee-Pro XBee-Pro Intl
0 -10 dBm 10 dBm -3 dBm
1 -6 dBm 12 dBm -3 dBm
2 -4 dBm 14 dBm 2 dBm
3 -2 dBm 16 dBm 8 dBm
4 0 dBm 18 dBm 10 dBm

Table 4.1: Transmit power levels for the PL parameter.

range is 0x24 to 0x64. If no packets have been received since the last power cycle, reset or sleep event then the returned
value will be 0.Note: A post by gworle in the XBee-PRO XSC forum suggests that the RSSI reading includes any noise
component, so in the presence of noise the figure will be inflated. The suggestion from gworle is that packet percentage
is a better measure of reliability.

Chapter 5

API Packets

When operating in API mode, all communication between the host and the XBee is by means of these binary packets.
The product manuals for firmware versions 1xAx to 1xEx list thirteen packet types. There are nine main types, and four
of those have two sub-types. This table, ordered by packet type id, lists them.

Id Packet Page
Packets you can send

0x00 TX request with 64-bit destination address 5-4
0x01 TX request with 16-bit destination address 5-4
0x08 Local AT command, immediate action 5-2
0x09 Local AT command, queued action 5-2
0x17 Remote AT command with 64-bit destination address5-3

Packets you may receive
0x80 RX with 64-bit source address 5-5
0x81 RX with 16-bit source address 5-5
0x82 Input line states with 64-bit source address 5-4
0x83 Input line states with 16-bit source address 5-4
0x88 Local AT response 5-2
0x89 TX response 5-5
0x8a Modem status packet 5-1
0x97 Remote AT response 5-3

5.1 All Packets

Every packet has a three-byte header, a payload and a single-byte checksum:

• The first byte of the header is always 0x7e.

• The second byte of the header is the most significant byte of the payload length. It is always zero, because currently
there are no packets longer than 255 bytes.

• The third byte of the header is the least significant byte of the payload length.

• The payloads for the different packet types are described below. Every payload begins with a byte which identifies
its packet type.

• The checksum is calculated from the payload bytes only. Its value is the sum of the payload bytes, subtracted from
0xff. When checking the checksum on an incoming packet, the sum of the payload bytes plus the checksum byte
should be 0xff. All calculations are done modulo 0x100.

5.2 Modem Status Packet

1. Byte: packet type id 0x8a

5-1

5-2 CHAPTER 5. API PACKETS

2. Byte giving modem status

• 0: Hardware reset.

• 1: Watchdog timer reset.1

• 2: Associated.

• 3: Disassociated.

• 4: Synchronization lost (Beacon-enabled only).

• 5: Coordinator realignment, whatever that means.

• 6: Coordinator started.

Modem status packets are sent from the XBee to its host when status conditions change. They cannot be requested by the
host. The modem status packet is identical for Series 1 and Series 2.5 XBees.

5.3 Local AT Command Packets

These packet types are useful only if the host wants to send commands to its local XBee.

5.3.1 AT Command

This comes in two varieties, depending on whether the command is to be queued, or acted on immediately. This packet is
sent from the host to the XBee.

1. Byte: packet type id 0x08 for immediate action, or 0x09 forqueued action.

2. Byte: frame id. This is an arbitrary value chosen by the host. The value will be returned in the response packet,
except that a value of 0 will suppress the response packet.

3. Byte: first character of the AT command code.

4. Byte: second character of the AT command code.

5. Optional bytes: new value for a parameter, most significant first or (for text values) natural order. Numeric parameter
values are specified as binary bytes or words.

The Series 2.5 product manual has the same packet format, butfor the non-queued verion adds that “A string parameter
used with the NI (Node Identifier), ND (Node Discover) and DH (Destination Address High) command is terminated with
a 0x00 character.” The Series 1 product manual makes no mention of this.

5.3.2 AT Response

This packet is returned to the host from the XBee for each AT Command packet.

1. Byte: packet type id 0x88.

2. Byte: frame id as given in the command packet.

3. Byte: first character of the AT command code.

4. Byte: second character of the AT command code.

5. Byte: status.

• 0: OK

• 1: ERROR

6. Optional bytes: value of parameter, most significant first. These bytes are present if the command was a command
associated with a parameter value and if the command didn’t supply a new value for the parameter.

The Series 2.5 packet has the identical format, but adds two status codes: 2 for invalid command and 3 for illegal param-
eter.

1This is the first mention I’ve seen of a watchdog timer.

5.4. REMOTE AT COMMAND PACKETS 5-3

5.4 Remote AT Command Packets

5.4.1 Remote AT Command

The ability to send AT commands from a host to an XBee other than its immediately connected one was introduced in
firmware version 1xCx.

1. Byte: packet type id 0x17 for 64-bit destination address.

2. Byte: frame id. This is an arbitrary value chosen by the host. The value will be returned in the response packet,
except that a value of 0 will suppress the response packet.

3. Bytes: 64-bit destination address. The special value 0x000000000000ffff makes it into a broadcast packet.

4. Bytes: 16-bit destination address. If this address is setto 0xfffe, then the 64-bit address will be used. Otherwise,
this address is the 16-bit destination address and the 64-bit address will be ignored.

5. Byte: 02 to apply all queued changes immediately, 00 to queue them until the next AC command or the next remote
AT command that has 02 in this field.

6. Byte: first character of the AT command code.

7. Byte: second character of the AT command code.

8. Optional bytes: new value for a parameter, most significant first or (for text values) natural order. Numeric parameter
values are specified as binary bytes or words.

5.4.2 Remote AT Response

1. Byte: packet type id 0x97 for 64-bit source address.

2. Byte: frame id as given in the command packet.

3. Bytes: 64-bit source address (8 bytes).

4. Bytes: 16-bit address. It seems to be the source address ofthe module sending the response, but I suspect it’s more
subtle than that. The 1xCx product manual says it’s the 16-bit network address of the remote.

5. Byte: first character of the AT command code.

6. Byte: second character of the AT command code.

7. Byte: status.

• 0: OK

• 1: ERROR

• 2: Invalid command

• 3: Invalid parameter

• 4: No response.

• 5: I’ve seen this, but I don’t know what it means. It happened while I was experimenting with packet layouts,
so maybe it’s a general “that doesn’t make sense” indicator.

8. Optional bytes: parameter value if the command was such asto return one.

5-4 CHAPTER 5. API PACKETS

5.5 Input Line States

This packet is used when a remote XBee and a base XBee have beenconfigured so that the remote will sample its inputs at
set intervals, and transmit the results to the base. If the base XBee is configured to pass such data out through the UART,
the base’s host will receive this packet.

1. Byte: packet type id 0x82 for 64-bit source address, or 0x83 for 16-bit source address.

2. Bytes: source address. Two bytes for 16-bit source addressing, or eight for 64-bit source addressing.

3. Byte: RSSI value.

4. Byte: options. If bit 1 is set, this is an address broadcast. If bit 2 is set, it is a PAN broadcast. All other bits are
reserved.

5. Byte: sample quantity. This is the number of full sets of samples in what follows.

6. Word: 2-byte channel indicator msb first. Bits 14–9 are a 6-bit mask, with 1 for each ADC channel in AD5–AD0
respectively that will be reported. Bits 8–0 are for the digital lines D8–D0, showing which of them will be included
in the values. Bit 15 is not used.

7. Word: optional 16-bit bitfield, with bits corresponding to lines D8–D0 as in the channel indicator. Where bits were
set in the channel indicator, the corresponding bits here show the state of the input. These bytes are not present if
there are no lines enabled as digital inputs.

8. Words: if any bits in the channel indicator were set among the A-D inputs, those readings now follow. Each is a
16-bit value with the A-D reading in the low-order 10 bits. A-D readings are given in order from AD0 to AD5.

5.6 Transmit Request

This is how a host can transmit data over the network to another host. There are three basic packet types involved, though
as either 16 or 64-bit addressing may be used, there are two variants of two of them.

These packet types are useful only if there are multiple hosts in the network, and those hosts want to communicate
with each other.

5.6.1 TX Request

The host initiates the transfer by sending this packet to itsXBee.

1. Byte: packet type id. This is 0x00 for 64-bit addressing, or 0x01 for 16-bit.

2. Byte: frame id. This is an arbitrary value chosen by the host. The value will be returned in the response packet,
except that a value of 0 will suppress the response packet.

3. Destination address. Either two or eight bytes, depending on the packet type id. For a broadcast packet, set this
address to 0xffff. The broadcast address is the same for two or eight-byte addressing.

4. Byte: options. This is the bitwise OR of these flags. All other bits must be zero.

• 0x01: Disable ACK. This tells the XBee not to return a response packet (see Section 5.6.3).

• 0x04: Send the packet with broadcast PAN id.

5. Bytes: data. Between 0 and 100 bytes which will be transferred to the destination host.

A comparison between Series 1 and Series 2.5 XBees for this packet type is given in Table 5.1.

5.6. TRANSMIT REQUEST 5-5

Field Series 1 Series 2.5
type 0x00 (4) 0x01 (4) 0x10 (4)
frame id (5) (5) (5)
64-bit dest (6-13) (6-13)
16-bit dest (6-7) (14-15)
broadcast radius (16)
options (14) (8) (17)
data (15. . .) (9. . .) (18. . .)

Table 5.1: Comparison of API packets for TX Request. The numbers in brackets are the byte offsets for the fields.

5.6.2 RX

This is the packet that the destination host will receive, assuming the transmission was successful.

1. Byte: packet type id 0x80 for 64-bit addressing, or 0x81 for 16-bit addressing.

2. Source address. Either two or eight bytes, depending on the packet type id.

3. Byte: RSSI value. This is the absolute value of the (negative) dBm figure.

4. Byte: options. If bit 1 is set, this is an address broadcast. If bit 2 is set, it is a PAN broadcast. All other bits are
reserved.

5. Bytes: data. These are the data bytes from the original TX Request packet.

5.6.3 TX Status

The originating host’s XBee returns this packet to its host,after the packet has been succesfully or unsuccessfully trans-
mitted. This packet willnot be returned if the ACK was disabled in the options byte of the TX Request.

1. Byte: packet type id 0x89.

2. Byte: frame id copied from the TX Request packet.

3. Byte: status.

• 0: Success

• 1: No ACK received from the destination, and all retries havebeen attempted. A broadcast transmission will
never result in this value.

• 2: CCA failure.

• 3: Purged. This occurs when a coordinator times out of an indirect transmission. The timeout is 2.5 times the
value of the SP parameter. I take that to mean that the coordinator was holding on to a message for a sleeping
remote, and couldn’t contact the remote within the timeout so the coordinator discarded the message. But I
could well be wrong.

6 CHAPTER 5. API PACKETS

Appendix A

Baud Rates and their Accuracy

In serial communications, the baud rate should be about the simplest parameter you can get. But it isn’t. The reason is
that what you set is not always what you get. You may think you’ve specified a particular rate, but the actual rate may be
different to a degree that affects the quality of communication.

A.1 System Clock Frequency and UART Clock

In pretty much any digital device, there will be one oscillator (clock) that controls the timing of events. The clock is a
signal source, running at a particular high frequency. Any circuitry that needs to use a lower frequency will use a sub-
multiple of that frequency. The sub-multiple will be provided by a divider circuit, so any frequency which is an exact
integer division of the master frequency is available.

From that, it follows that if you want a frequency that isn’t asub-multiple of the master clock frequency, you’re going
to have to settle for the nearest approximation. And it’s here that the world tends to split into two camps. In one camp
we have the PC serial port, which will normally use a crystal clock that does divide exactly to give the advertised baud
rates. In the other camp we have microcontrollers, which often use clocks that are a fairly small multiple of 1MHz. These
clocks do not divide down to give exact baud rates. The XBee isin the 1MHz-multiple camp: it has a 16MHz crystal
clock.

The UART itself needs a clock signal with a frequency of 16 times the baud rate (see Receiver Operation below). It’s
this frequency that must be derived from the system clock by the divider circuit.

A.2 Available Baud Rates

As an example, take a system with an 8MHz master clock. If thisclock is to drive a UART at 9600 baud, it must be divided
down to a frequency of16× 9600 = 153, 600 Hz. The dividing factor is therefore8, 000, 000/153, 600 = 52.0833. That
isn’t an integer value, but the nearest integer is52. The actual baud rate is then8, 000, 000/16/52 = 9615.38 baud, which
is a ratio of1.0016 (0.16%) from the exact value. Pretty good.

Now suppose we want 115,200 baud from the same master clock. The UART clock frequency must be16×115, 200 =
1, 843, 200 Hz. So the dividing factor is8, 000, 000/1, 843, 200 = 4.3402. The nearest integer is 4, so the actual baud
rate will be8, 000, 000/16/4 = 125, 000 baud. That differs from what was wanted by a factor of 1.085 (8.5%), which is
not at all good. This UART will not be able to communicate withone that runs accurately at 115,200 baud.

To fix this, suppose we double the master clock speed to 16MHz.The dividing factor is now16, 000, 000/1, 843, 200 =
8.68, or 9 when we take the nearest integer value. The actual baud rate is therefore16, 000, 000/16/9 = 111, 111 baud.
The difference ratio is 1.0368 (3.68%), which is in theory just within acceptable tolerance (see below). The master clock
of the XBee is 16MHz, so this scenario represents the situation where an XBee is connected to a PC.

Overall, lower baud rates mean higher factors by which the master clock is divided. In turn, that means there is finer
control over the frequency. So if we’re going to see problems, they’re going to happen at the highest baud rates.

A-1

A-2 APPENDIX A. BAUD RATES AND THEIR ACCURACY

A.3 Serial Line Receiver Operation

When a serial line is idle, it is in mark state (logic 1). Transmission of a byte begins with the start bit, which is a period of
logic 0. Then come the 8 data bits, and finally the stop bit which is at logic 1 level (same as the following idle state).

The receiver must recognise the beginning of the start bit, and then sample the line halfway through each of the 10 bit
periods. The receiver clock runs at 16 times the baud rate, and the receiver can sample the input line once per period of
this clock. The sequence of operations is:

1. The start bit begins.

2. At its next clock cycle, the receiver detects that the start bit has begun. This may be up to1/16 of a bit period after
the actual start.

3. After another 8 cycles, the receiver samples the line again. If the line is still at logic 0, the start bit is confirmed.
Otherwise the initial transition is dismissed as noise.

4. After another 16 cycles the receiver samples the line. This is repeated a further 7 times, to get the values of the eight
data bits.

5. After another 16 cycles the receiver samples the line again, expecting to see the logic 1 level of the stop bit. If it
doesn’t see a logic 1 at that point, it discards the data and reports a framing error.

6. After one more cycle the receiver starts sampling the lineat every cycle, waiting for the next start bit.

From that, it follows that a receiver can accept transmittedbytes if they arrive no faster than at periods of1+8+8×16+
16 + 1 = 154 of its clock cycles. If the transmitter and receiver clocks are at the same frequency, the receiver will see a
byte every 160 clock cycles. Therefore the transmitter can be faster than the receiver by a factor up to160/154 = 1.039
(3.9%), and in theory all will still be well.

It also follows that if the transmitter is slower than the receiver, all will be well if the period between the beginning of
the start bit and the beginning of the stop bit (144 clock cycles for the transmitter) corresponds to more than 153 of the
receiver’s clock cycles. So the transmitter baud rate must be greater than144/153 = 0.94 of the receiver baud rate.

Any bidirectional serial channel, if there is a baud rate mismatch, will have the transmitter running faster in one
direction and the receiver running faster in the other. The tighter condition for the speed difference is for the direction in
which the transmitter is running faster, so the ratio of 1.039 is the limiting case for the connection as a whole.

A.4 Signal Quality

We’ve seen that connecting an XBee to a PC at a nominal rate of 115,200 baud with one stop bit results in a connection
which is close to the theoretical limit. In theory it should still work perfectly well, but in practice there are reports of
problems with this setup. It seems to me that the likely reason is signal degradation, probably arising from the connecting
cable. This cable will have capacitive and inductive qualities, so the signal will be slightly distorted when it emergesat
the other end. And since the connection is operating so closeto the limit, any distortion or other noise is likely to be fatal
to the communication quality.

A.5 Solution at 115,200 baud

Theory says that if you connect an XBee to a PC at 115,200 baud you should be able to get away with one stop bit. In
practice, any element of noise or other signal degradation is likely to lead to data loss. The baud rates are already set to
the best obtainable values, so to prevent the problem the only remaining option is to configure the PC to send two stop
bits, thus slowing its transmission rate to one that the XBeecan reliably accept.

Since at 115,200 baud nominal the XBee is running more slowlythan the PC, there is no need to slow it further. So
there is no need for the XBee to be configured with two stop bits. However, if non-standard baud rates are used, there will
be some cases in which the XBee will be the faster transmitter. In such cases, it can be configured to send two stop bits
with the commandATNB=3. The description of that command is to set mark parity, whichis equivalent to an extra stop
bit.

If instead of a PC the XBee is connected to a microcontroller,and if the microcontroller’s clock is a multiple of 1MHz,
then the whole problem goes away. It doesn’t matter that neither end can support standard baud rates exactly, because
they can still both be set to the identical non-standard rate.

A.6. DISCUSSION OF 57,600 BAUD A-3

System % Error at Baud Rate
Model Clock Hz 57,600 115,200 230,400 Note
XTend 60M 0.16 1.73 1.73
900/868 48M 0.16 0.16 0.16
Series 2 24M 0.16 0.16 0.16 1
XSC 20M 3.34 -1.36 2
Series 1 16M 2.12 -3.55 8.51 3
XStream 8M 3.34 -1.36 4
Notes:
1. Zigbee or ZNet 2.5.
2. Special case in code for 115,200 (16 clocks per cell).
3. 802.15.4 or Digimesh.
4. Special case in code for 115,200 (8 clocks per cell).

Table A.1: XBee models and baud rate accuracy.

For microcontrollers with clocks running at frequencies other than those discussed, it’s probably a good idea to use
the calculations given above to see what baud rate mismatch if any can be expected. If a mismatch is found which is a
significant fraction of the limit, then an extra stop bit on the faster transmitter may be a wise precaution.

A.6 Discussion of 57,600 Baud

At 57,600 baud there is still a mismatch between an XBee and its PC host, though to a lesser extent than at 115,200 baud.
The nearest the XBee can get is 58,824 baud which means it is sending at a rate 2.12% faster than the host expects. To
judge by postings in the forums, this mismatch generally doesn’t cause problems. However, if problems do occur then the
solution is again to slow down the faster transmitter. At 57,600 baud nominal the faster transmitter is now the XBee so it
must be configured to send two stop bits with theATNB=3command.

A.7 Baud Rate Accuracy on Other XBees

Digi have very kindly supplied me with information on how other XBees perform at higher baud rates, and I reproduce
their information here, in Table A.1.

A.8 Historical Note

If you google for this sort of stuff, you’ll find statements tothe effect that serial line communications can tolerate as much
as 10% in the mismatch of baud rates - a figure which appears to contradict the 3.9% figure derived above. The 10%
figure in fact goes back to the days of mechanical teletypes, which used the stop bit purely as a delay mechanism between
transmitted characters. Teletypes did not check the validity of the stop bit, but modern UARTs do. Teletypes, by their
nature, also took an average of the line state during a bit period. And they didn’t have the granularity issue of the 16x
clock. These differences, and probably some others that I haven’t thought of, contribute to the slightly surprising fact that
a modern UART does in fact have a tighter speed match requirement than the old equipment did.

A-4 APPENDIX A. BAUD RATES AND THEIR ACCURACY

Appendix B

A Study of Custom Baud Rates on the
Series 1 XBee

B.1 Introduction

/large If you think this appendix ends rather abruptly, you’ re right. It’s a work in progress, and at
some point I may or may not finish it. . .

B.2 The Calculation of Percentages

How hard can it be to calculate the percentage difference between two values? Well, it depends on what you want to do
with the result.

Suppose we have three valuesa, b andc. Suppose also thata < b < c. Which ofa andc is closer tob? To illustrate
with a concrete example, assume thata = 95, b = 100 andc = 105. In pure arithmetic terms each ofa andc differs
from b by 5, so by that measure they are equally close and we would probably express this by saying that each ofa andc
differed fromb by 5%.

That might be fine ifa, b andc are amounts of money, but it’s less good if they are componentvalues in an electronic
circuit or (as here) baud rates. What is then of more concern (Iwould argue) is not the absolute difference but the ratios
of the values. Taking the same example and calculating the ratios gives

b

a
= 1.0526

and
c

b
= 1.05

Not a great difference between the two ratios, but it does show that by this measurec is closer tob thana is. If we were
trying to achieve a baud rate of100 and our only choices were95 or 105, we would probably prefer the latter.

Now a common way of expressing a ratio as a percentage is to usethis formula:

pct = 100 ×

(

x

y
− 1

)

Plug inb for x andc for y, and the answer comes out as−4.7619%. Interchange the two values and the answer comes out
at+5%. Ignoring the difference in the sign, that’s two differentnumeric values for the same ratio.

It would be preferable to modify the calculation of percentages so that numbers in the same ratio always gave the same
numeric answer (again, apart from the sign). It turns out to be easy to do. Here’s the algorithm for calculating the ratio as
a percentage, given two valuesx andy:

1. If x > y, remember the sign as1. Otherwise remember the sign as−1 and exchange the values ofx andy.

2. Calculate the ratio asx/y. This value will always be greater than or equal to1.

3. Subtract1 and then multiply by100.

B-1

B-2 APPENDIX B. A STUDY OF CUSTOM BAUD RATES ON THE SERIES 1 XBEE

Rate XBee Error % Rate XBee Error %
1200 1200 0 19200 19230 0.156
2400 2398 -0.083 38400 38461 0.159
4800 4807 0.146 57600 58823 2.123
9600 9615 0.156 115200 111111 3.680

14400 14492 0.639 230400 250000 8.507

Table B.1: Standard baud rates and the XBee’s closest approximations.

4. Multiply the ratio by the sign.

Yes, it’s more elaborate than the usual calculation. But it has the desirable property that a smaller absolute value indicates
a closer ratio, which the usual calculation did not provide.

In what follows, all percentages are calculated by this method.

B.3 Standard Baud Rates

Table B.1 shows a selection of standard baud rates, togetherwith the closest baud rate that the Series 1 XBee can achieve
for each, and with the percentage error (calculated as above).

We know from reports in the forums that communication at 115,200 baud is problematic, yet I’ve seen no reports of
problems at 57,600. So it would appear that there is a threshold somewhere between 2.123% and 3.680% where trouble
starts to kick in. That’s a fairly wide gap, and it would be nice to have a better idea of where the threshold actually is.

B.4 How Close do Baud Rates Need to Be?

Appendix C

Using X-CTU under Linux

Linux being my operating system of choice, I’ve always felt some frustration at having to dig out a Windows machine
when I want to update XBee firmware. I now know that I was wrong in this – there’s actually no need at all to run
Windows in order to run X-CTU for firmware upgrades.

Google has shown me that I’m far from being the first to discover this, but I thought I’d publish it because I’ve seen a
few questions about it in the XBee forums and I’ve not yet seenthe solution posted.

The key is thewine program, and finding out how to make it work for X-CTU.
Wine is available for Linux and for Mac, so in principle this explanation should also apply for Mac users. I haven’t

been able to try it on a Mac though.
The wine home page ishttp://www.winehq.org/ .
So if you use Linux or Mac and want to try this, here’s the recipe.
Obviously, make sure you have wine installed. Typing

which wine

as a command is one way to find out. If it isn’t installed, your distribution probably has it available as a package.
Now download the latest version of X-CTU. I got version 5.1.4.1 which came as a file called40002637 c.exe . If

a later version has been released by the time you read this, use the later version instead.
Run the command

wine 40002637_c.exe

That installs X-CTU. If it asks questions, take the default answer every time.
The first time you run wine it creates a hidden directory called .wine in your home directory. This directory contains

some configuration stuff and a subdirectory calleddrive c . Thedrive c directory corresponds to the C: drive (surprise
surprise).

You’ll find the X-CTU installation iñ /.wine/drive_c/ProgramFiles/Digi/XCTU and if you navigate to
there you can run X-CTU with

wine X-CTU.exe

Try it by all means, but there’s more to do before it will run successfully.
Actually on my distribution (Fedora Core 11) I also got a desktop icon for launching X-CTU. Your mileage may vary.
In the.wine directory there’s also a directory calleddosdevices . Thedosdevices directory contains symbolic

links. Here’s how mine looked originally:

[john@spike dosdevices]$ ls -l
total 0
lrwxrwxrwx. 1 john john 10 2010-02-13 18:30 c: -> ../drive_c
lrwxrwxrwx. 1 john john 1 2010-02-13 18:30 z: -> /

Now at this point the recipe forks. I’m using an RS-232 development board, so I needed to put intodosdevices a
symbolic link calledcom1 to the serial port device file (/dev/ttyS0 in my case). To do that from withindosdevices :

[john@spike dosdevices]$ ln -s /dev/ttyS0 com1

C-1

http://www.winehq.org/
~/.wine/drive_c/Program Files/Digi/XCTU

C-2 APPENDIX C. USING X-CTU UNDER LINUX

Note: no colon aftercom1.
Next check the permissions on/dev/ttyS0 (or whatever you’re using). I found it was owned by root and inthe

dialout group, with permissions allowing access only by those users. There are two solutions to this: 1. Make it available
to all users (you need to be root for this command):

chmod o+rw /dev/ttyS0

or 2. Add yourself to the dialout group (also as root):

usermod -a -G dialout john

and (as yourself) log out and in again for the change to take effect. Use the

groups

command to confirm that you’ve joined dialout.
If you’re using a USB development board, the procedure will be similar but with a twist, because USB/dev files are

typically created only when a device is plugged in. There will be a different group to join (perhaps uucp), or to change the
permissions you have to dig in the/etc/udev directory. The device files have names like/dev/ttyUSB0 so you’ll
need to set symbolic links accordingly. As you may gather from the slightly vague wording, I haven’t actually tried this.

Now you’re ready to run X-CTU. Have a development board or equivalent connected at this point, so that there’s
something for it to see.

Launch X-CTU and the next problem becomes clear: it won’t detect any COM ports. Fear not. Click on the User
Com Ports tab and enter the port by hand. So if you’re using COM1 put a 1 in the Com Port Number box, then click on
Add. Now COM1 appears in the Select Com Port box and you can click there to select it. Hit the Test/Query button and
if all has gone well you’ll get a dialog box with the modem typeand its firmware version.

Unfortunately X-CTU won’t remember the COM port next time it’s run, so you have to do the last step every time.
Still, that’s not a huge imposition.

And at that point you’re ready to go. Click on the Modem Configuration tab and upgrade the firmware on your module.
A few caveats:

1. The display of parameter settings didn’t look right to me,and I wouldn’t like to use X-CTU in this way for viewing
or changing parameters. That’s ok by me – I’ve made my own software for that, and in this exercise I was only
interested in firmware upgrades.

2. X-CTU didn’t automatically discover the modem type and function set so I had to select those by hand from the
menus.

3. It also didn’t manage to read the parameter values when I asked it to.

4. The menu for selecting the version of the upgrade didn’t appear in the proper order. The latest version was some-
where in the middle.

5. While X-CTU was running, wine was generating various “fixme” type messages to the console. That probably
explains the other caveats, but hey – the firmware upgrades worked!

Maybe further work would solve the caveats, but for now I’m happy with what I have. If anyone else tries this, please
use the forum to let us all know how you get on.

Appendix D

Change Log

I try to record changes to this cookbook here, to make things easier for readers when I post new issues. I don’t record
small changes such as the correction of typos or when I make minor rewordings to make things clearer.

D.1 Changes

D.1.1 Changes in issue 1.4 (published 26 Apr 2011)

• Clarified the role of the IU parameter. My thanks to Pac for posting a pertinent question in the forum thus causing
me to check the point.

• Added Table A.1, describing for XBees other than the Series 1how accurate are their baud rates at the higher rates.

• Made a start on Appendix B. This is a work in progress, and not yet useful. In time I’ll either finish or delete it.

D.1.2 Changes in issue 1.3 (published 9 Mar 2011)

• Added Section 2.3 on voltage level conversions (page 2-5).

• I learned how to make cross-references work as hyperlinks inPDF files. You can now, for instance, go to the index
and click on a page number to go to that page. Depending on the setup of your PDF viewer, you should also see in
the sidebar the table of contents instead of the page thumbnails.

D.1.3 Changes in Issue 1.2 (published 7 Mar 2010)

• Added an appendix on how to use X-CTU under Linux (page C-1). It’s a lightly edited version of a posting I had
previously made in the X-CTU forum.

• Added further note on analog outputs: reported not working with version 10CD (page 2-3).

• Added description of the NO (Node Discovery Options) command (page 4-3).

• Corrected the default values for the P0 and P1 commands. The default for P0 is 1, whereas previously the cookbook
said the default for both was 0 (page 2-3).

• Added a description of the CK command (page 3-1.

• Added a note on transmission reliability at 57,600 baud (page A-3).

• Added a comment on a curious side effect of trying to read the IO parameter (page 2-3).

• Added a note in the description of the M0 and M1 parameters: under 10E6 their values cannot be read, even though
the product manual says they can (page 2-3).

• Clarified the description of the IS command’s parameter. Theparameter does nothing and should be ignored
(page 2-1).

D-1

D-2 APPENDIX D. CHANGE LOG

D.1.4 Changes in Issue 1.1 (published 26 Jan 2010)

• Added Section 3.4 (page 3-3) to describe hardware and software flow control in more detail.

• Added cautionary note on analog outputs (page 2-3).

• Added this appendix.

D.1.5 Issue 1.0

Although it wasn’t marked as such, issue 1.0 was the first issue I published on the website and to the XBee forums.

Index

A1 command, 4-3
A1 parameter, 4-1
A2 command, 4-3
A2 parameter, 4-1
AC command, 3-3
ACK, 4-1
AI command, 4-3
analog inputs, 2-3
analog outputs, 2-3
AP command, 3-1, 3-2
API mode, 3-1
API packets, 5-1
AS command, 4-3
Associated indicator, 2-1
association, 4-3
AV parameter, 2-3

baud rate, 2-4
BD parameter, 2-4
beacon request, 4-3
broadcast mode, 4-1

CA parameter, 4-1
CC parameter, 3-2
CE command, 4-3
CE parameter, 4-1
CH command, 4-2
CH parameter, 4-1
channel frequency, 4-2
channel indicator, 2-2, 5-4
channel number, 4-2
CK command, 3-1
CN command, 2-4, 3-3
collision avoidance, 4-1
command state, 3-2
coordinator enable, 4-3
CT parameter, 3-3
custom baud rates, B-1
cyclic sleep, 3-2

Dn parameter, 2-1, 2-3
DA command, 4-3
DB command, 4-3
DD command, 3-1
DH parameter, 4-2
digital inputs, 2-3
digital outputs, 2-3
disassociation, 4-3

DL parameter, 4-2
DN command, 4-2
DP command, 3-2
DP parameter, 4-3
duplicate packets, 4-2

EA parameter, 4-1
EC parameter, 4-2
ED command, 4-3
EE command, 4-3
encryption, 4-3
energy scan, 4-3

factory default, 3-3
features, 1-1
flow control, 3-3
FP command, 4-3
FR command, 3-3

GT parameter, 3-2
guard interval, 3-2

HV command, 3-1

I/O data packet, 2-1
I/O line passing, 2-4
I/O lines, 2-1
I/O pins, 2-1
IA parameter, 2-2, 2-4
IC parameter, 2-1, 2-4
ID command, 4-2
ID parameter, 4-1
idle state, 3-2
internal voltage reference, 2-3
IO parameter, 2-3
IR parameter, 2-2, 2-4, 3-2
IS parameter, 2-1
IT parameter, 2-2, 2-4, 3-2
IU parameter, 2-4

KY command, 4-3

Linux, C-1

Mp parameter, 2-3
MAC mode, 4-2
MM command, 4-2
module mode, 3-1
module state, 3-2

1

2 INDEX

MY parameter, 4-2

NB parameter, 2-5
ND command, 4-2
network addressing, 4-2
network association, 4-3
network identification, 4-2
network scanning, 4-2
network types, 4-1
NI command, 4-2
NO command, 4-3
Node Identifier, 4-2
node identifier, 4-2
non-volatile memory, 3-3
NT parameter, 4-3

Pp parameter, 2-3
PAN (Personal Area Network), 4-2
parity, 2-5
pin doze, 3-2
pin hibernate, 3-2
pinout, 2-1
PL parameter, 4-3
power levels, 4-3
PR parameter, 2-1
PT parameter, 2-4
pull-up resistors, 2-1

RE command, 3-3
receive data frame, 3-1
retries, 4-1
RN parameter, 4-1
RO command, 3-1
RP parameter, 2-3
RR command, 4-1, 4-2
RSSI, 4-3

SC command, 4-3
scan duration exponent, 4-3
SD command, 4-3
serial lines, 2-4
SH parameter, 4-2
SL parameter, 4-2
sleep, 3-2
SleepRQ, 3-2
SM parameter, 3-2
SO parameter, 3-2
SP parameter, 3-2
ST parameter, 3-2

Tn parameter, 2-4
transmit data frame, 3-1
transparent mode, 3-1

unicast mode, 4-1

version numbers, 3-1

virtual wires, 2-4
VL command, 3-1
VR command, 3-1
VREF, 2-3

WR command, 3-3

X-CTU, C-1

	Features
	Electrical Specifications
	Pinout
	I/O Lines
	All I/O Lines
	All Inputs
	Digital Inputs
	Digital Outputs
	Analog Inputs and VREF
	Analog Outputs
	I/O Line Passing
	Serial Lines
	Pin 5 -- RESET

	Voltage Level Conversions

	Operation
	Version and Device Information
	Module Mode
	Transparent Mode
	API Mode

	Module State
	Idle State
	Sleep State
	Command State

	Flow Control
	Hardware Flow Control
	Software Flow Control

	Networking
	Network Types
	NonBeacon
	NonBeacon w/Coordinator
	Transmission Modes
	Collision Avoidance
	MAC Mode
	Network Addressing
	Network Identification and Scanning
	Network Association
	Encryption
	Power Levels

	API Packets
	All Packets
	Modem Status Packet
	Local AT Command Packets
	AT Command
	AT Response

	Remote AT Command Packets
	Remote AT Command
	Remote AT Response

	Input Line States
	Transmit Request
	TX Request
	RX
	TX Status

	Baud Rates and their Accuracy
	System Clock Frequency and UART Clock
	Available Baud Rates
	Serial Line Receiver Operation
	Signal Quality
	Solution at 115,200 baud
	Discussion of 57,600 Baud
	Baud Rate Accuracy on Other XBees
	Historical Note

	A Study of Custom Baud Rates on the Series 1 XBee
	Introduction
	The Calculation of Percentages
	Standard Baud Rates
	How Close do Baud Rates Need to Be?

	Using X-CTU under Linux
	Change Log
	Changes
	Changes in issue 1.4 (published 26 Apr 2011)
	Changes in issue 1.3 (published 9 Mar 2011)
	Changes in Issue 1.2 (published 7 Mar 2010)
	Changes in Issue 1.1 (published 26 Jan 2010)
	Issue 1.0

	Index

