Overview

- Review complex power, real power, reactive power
- Introduce one-line diagram (circuit)
- Introduce the power flow problem
 - Must employ a numerical solution (not an analytic solution)
 - (Why?)

Memories of Circuit Theory

- Kirchhoff’s Laws
 - Equations
 - The underlying physics represented by the equations (conservation laws?)
- For circuits problems, typically we are…
 - Given what information?
 - Solving for what?

Power System Diagrams

- Circuit vs. one-line diagram
Power System Diagrams

- Circuit vs. one-line diagram

Generators are shown as circles
Transmission lines are shown as a single line
Arrows are used to show loads

New York + Northeast

Figure 2.4 Sample Map of Power Plant Sites and Transmission Lines in Honduras
(Source: FNFF)
Power Flow Analysis v. Circuits

- In circuit analysis, we know (or calculate)
 - V, I, Z; and ultimately the power, P
- In power system analysis we do not know
 - The complex voltages (magnitude & phase)
 - The complex current injections
- Instead, we do know
 - the complex power being demand at each load
 - estimates for the power ‘injected’ by generators
 - estimates for the voltage magnitudes at generators
- Therefore
 - we need to go beyond Ohm’s law
 - we must use ‘power flow’ equations

Complex Power $S = P + jQ$

- Instantaneous – at a given moment in time
- Average – over a specified time period
- Phasor domain (SSS)

\[p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i) \]

\[p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) \]

Phasors: Power & Phase Angle

- Writing power in phasor notation:

\[P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \]

\[V = V_m \angle \theta_v = V_m e^{\theta_v} \]

\[I = I_m \angle \theta_i = I_m e^{\theta_i} \]

- Moving to complex power (with RMS):

\[VI = \]

\[VI^* = \]

\[S = Re\{VI^*\} + jIm\{VI^*\} = P + jQ \]
Concept: “Real” Power, P

\[S = P + jQ \]

- \(P \) is what we buy from the power company
- Most customers do not pay for \(Q \)
- To maximize revenue, power companies would like to generate _____?
 - How would they operate or design the system to do this?
 - A role for the power factor?

Reactive (Imaginary?) Power

- Reactive power, \(Q \)
 - Oscillates within system
 - Energy stored in, and oscillating between, capacitance and inductance
- Voltage and (stored) reactive power allow real power to flow

Reactive Power Analogy

- Reactive power
 - Energy stored in capacitance and inductance
 - Supports the electromagnetic fields along transmission lines
 - Cannot be transmitted long distances
- Analogy
 - Inflatable firefighters’ water hoses
For Power Systems Analysis:

Power Flow Equations

- “Power flow” refers to how the power is moving through the system
- **Kirchhoff’s Current Law**
 – At all times in the actual power system, and in any simulation, the total power flowing into any bus (node) *must* equal zero (KCL)

Power Flow Equations

- Using KCL, we can write the current flow into the power system from any node i
 \[I_i = I_{Gi} - I_{Di} = \Sigma I_{ik} \]
- Since $I = YV$ (Ohm’s Law, where $Y = Z^{-1}$), we know: (subscripts in the summation?)
 \[I_i = I_{Gi} - I_{Di} = \Sigma Y_{ik}V_k \]
- What do “i” and “k” represent?

Complex Power – Phasor Domain

IMPORTANT

θ is the power factor angle

\[
\vec{S} = \vec{V} \vec{I}^* \quad \vec{I} = I \angle -\theta
\]

\[
\vec{S} = \vec{V} \vec{I}^* = V(\cos 0 + j \sin 0) \cdot I(\cos \theta + j \sin \theta)
\]

\[
\vec{S} = VI \cos \theta + j VI \sin \theta
\]

\[
\vec{S} = P + j Q
\]

Real Power **Reactive Power**

Power Flow Equations

- Turning to the power injection at node i, we can write
 \[S_i = V_i I_i^* = V_i(\Sigma Y_{ik}V_k)^* = V_i \Sigma Y_{ik}^* V_k^* \]
- We want to be able to calculate P_i and Q_i separately, so we need to expand the expression for S_i into real and reactive components.
Power Flow Equations

- Use the following expressions to expand the equation for complex power
 - \(Y_{ik} = G_{ik} + jB_{ik} \)
 - \(V_i = |V_i|<\theta_i = |V_i|e^{j\theta} \)
 - \(e^{j\theta} = \cos\theta + j\sin\theta \)
 - \(\theta_{ik} = \theta_i - \theta_k \)
 - \(S_i = P_i + jQ_i \)

- Finally, we can write
 \[
 S_i = V_i \sum Y_{ik}^* V_k = P_i + jQ_i
 = \sum |V_i||V_k| e^{j\theta_{ik}} (G_{ik} - jB_{ik})
 = \sum |V_i||V_k| (\cos\theta_{ik} + j\sin\theta_{ik})(G_{ik} - jB_{ik})
 \]

- Separate this into real & reactive parts
 \[
 P_i = \sum |V_i||V_k| (G_{ik} \cos\theta_{ik} + B_{ik} \sin\theta_{ik}) = P_G - P_D
 Q_i = \sum |V_i||V_k| (G_{ik} \sin\theta_{ik} - B_{ik} \cos\theta_{ik}) = Q_G - Q_D
 \]

Belgian High Voltage Network

*“i” takes on each bus number in turn, 1 through 53.
If “i” is bus 41, for example, then “k” takes on numbers 35, 36, 37, 40, 46, and 47 → all buses directly connected to bus 41.
There will be a set of power flow equations, \(P_i \) and \(Q_i \), for each bus “i”.

Power Flow Analysis

- For power systems, we know
 - The system topology (the circuit diagram)
 - The impedance of each line, R, X, B
 - The load at each load bus (\(S = P + jQ \))
 - The capability of each generator (P, V)
- We want to know
 - The output of each generator (\(S = P + jQ \))
 - The voltage at each bus (\(V = V<\theta \))
 - The power flow on each line (\(P_{flow} \))
Real Power Flow Equations

- How many equations and how many unknowns?
- Numerical methods
 - Lack of convergence
 - Slack bus
 - Definition
 - Mathematical and physical role

Power Flow Summary

- What is the purpose of power flow analysis?
- What is the process?
 - What data do we have and seek?
 - How is our understanding improved by performing a power flow?

Power Factor Review

- What is the power factor?
 - In words and mathematically
 - Power factor = \(\cos(\theta_v - \theta_i) \)
 - The phase angle \((\theta_v - \theta_i) \) is defined as the power factor angle
 - Note that this is also the impedance angle – do you see why?

Power Factor Review 2

- For inductive loads
 - The current lags the voltage, showing that \(\theta_i \) is less than (or more negative than) \(\theta_v \)
 - Therefore, \((\theta_v - \theta_i) > 0 \)
 - The power factor is said to be lagging
 - The load is said to be lagging
 - Reactive power, \(Q > 0 \) → An inductor consumes \(Q \)
Power Factor Review 3

- For capacitive loads
 - The current leads the voltage, showing that θ_i is greater than θ_v
 - Therefore, $(\theta_v - \theta_i) < 0$
 - The power factor is said to be leading
 - The load is said to be leading
 - Reactive power, $Q < 0 \rightarrow$ A capacitor generates Q

SIEPAC – Central America

Summary

- Introduction to the power flow problem
 - Review of complex power (and complex numbers)
 - Develop the power flow equations
 - Recap of power factor