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A vision shared by many experts is that future communities 
(residential and commercial developments, university and industrial campuses, military instal-
lations, and so on) will be self-sufficient with respect to energy production and will adopt 
microgrids. With power generation capacities of 10–50 MW, microgrids are usually intended 
for the local production of power with islanding capabilities and have capacity available for sale 
back to macrogrids. A typical microgrid portfolio includes photovoltaic (PV) and wind resources, 
gas-fired generation, demand-response capabilities, electrical and thermal storage, combined heat 
and power (CHP), and connectivity to the grid. Advanced technologies such as fuel cells may also 
be included. This article describes the problems encountered in analyzing prospective microgrid 
economics and environmental and reliability performance and presents some results from the 
software tools developed for these tasks.

Integration of Microgrid Operation and Investment 
The value of a microgrid portfolio depends on its projected return on investment and the potential 
growth in its operating income. For a portfolio of financial assets, valuations are based on projec-

tions of the market prices of those assets, using historical 
data about prices, industry trends, and futures prices as a 
basis for the projections. For a microgrid, the investment 
payoff is directly linked to the operation of the physical 
assets, and return on investment depends on how these 
operations will be optimized and utilized in the short term. 
The long-term value of a microgrid depends on when (in 
terms of market conditions) investments were made and 
also on the amount of the investment and its financing 
costs. Grid energy and fuel costs, the price of the neces-

sary technology (e.g., PV equipment, wind turbines, or storage), state incentives, and parameters 
such as finance charge rates, finance terms, and the relationship between the finance rate and the 
discount factor could all affect the optimal investment decision. 

Typical investment models for infrastructure assets utilize assumptions about the short-
term average performance of the assets and further assume that the underlying system operates 
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optimally (as computed on the basis of some average func-
tion). Operational dynamics driven by endogenous factors 
(i.e., asset reliability and degradation, demand prioritization, 
resource allocation, and risk management) and exogenous 
factors (i.e., weather forecasts, natural gas prices, and exter-
nal demand) are usually ignored or captured only on the 
basis of discrete choices or simple variance analysis. At the 
same time, any modularized approach to long-term invest-
ment, where assets are acquired and generation capacity 
is increased in stages, would affect short-term operational 
dynamics. Short-term returns from the microgrid will in 
turn influence long-term decisions about when to invest and 
what to invest in.

Figure 1 illustrates a model developed at DNV KEMA 
for evaluating investments in different configurations of a 
microgrid, taking into account economic and environmental 
metrics. This model simulates the microgrid operating opti-
mally in parallel with the grid. It also simulates operation in 
islanded mode when the grid is down, when maximizing reli-
ability criteria is key. On the resource side, different generation, 
storage, energy efficiency, and automation technologies are 
considered. On the demand side, buildings and respective 
end-use load are modeled in detail.

Energy Economics
The operation of a microgrid is closely tied to energy econom-
ics. This includes both the financials of interacting with the 
utility and macrogrid and the cost of self-generation. Various 
resources contribute to the economic benefits of a microgrid:

✔✔ Energy efficiency upgrades on equipment will lower 
the overall load baseline.

✔✔ On-site generation, possibly in conjunction with energy 
storage, can be utilized to avoid peak energy costs and 
even create revenue streams by selling energy back to 
the grid once price signals justify it economically. 

✔✔ Enrollment in demand response programs can be 
regarded as a means not only to reduce energy costs 
but also to generate revenue by reducing load on the 
grid. Demand response can be provided by both self-
generation and curtailable end-use load.

✔✔ While grid energy transactions and fuel costs domi-
nate the economics, microgrid participation in 
capacity and ancillary services markets can also be 
important incremental revenue drivers.

✔✔ The reliability improvements obtained through island-
ing capability and sufficient local resources can be 
valuable—quite valuable, depending on the mission 
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of the facility and the critical load served during 
islanded operations.

The marketplace in which the microgrid is playing signifi-
cantly affects the amount of savings realized. For example, 
many commercial end users are charged time-of-use rates, 
and switching to a different tariff scheme—such as one based 
on real-time data or on hourly locational marginal pricing 
(LMP)—could be beneficial to them. The decision to switch 
might not be a trivial one, however, as different schemes 
impose different risks on the microgrid, based on price vola-
tility and penalties for failing to deliver energy to the grid as 
scheduled if local resources, especially renewables, come up 
short. It should be noted that a microgrid has limited options 
for mitigating its risks. The options vary from relying on self-
generation to locking in both its cost and revenue streams by 
means of long-term agreements with respective parties. 

An example of a microgrid’s daily control process is shown 
in Figure 2, where decisions regarding energy purchase, CHP 
production, and the use of battery storage are optimized 
against the day-ahead electricity price and the available PV 
production. Less expensive on-site generation is utilized not 
only to avoid the higher cost of purchasing energy from the 
grid but also to gain revenue by selling energy back during 
morning peak times. The annual savings from self-generation, 
efficiency upgrades, and demand response participation is 
shown in Figure 3. Finally, Figure 4 demonstrates cash flows, 
reflecting investments in various technologies and the sav-
ings generated by the microgrid. Note that the energy bought 

from the grid is, in this case, extremely nonconforming, as 
the microgrid optimizes around renewable production, native 
demand, and grid hourly prices. This is not an extreme case; 
on an annualized basis, there is no net sell-back to the grid. In 
this example, load grows over time as occupancy of the facili-
ties increases despite the energy efficiency measures imposed. 
The cumulative cash flow for energy investments and opera-
tions shows an approximately eight-year payback.

Interaction of the Elements 
in Overall Energy Economics
While individual resources contribute to a microgrid’s bene-
fits, broader value can be achieved from the interaction of indi-
vidual elements. Renewable resources introduce uncertainties 
in operations due to intermittent availability, for example as 
a result of varying patterns of wind speed and solar irradia-
tion. These uncertainties become important because they can 
cause shortages or excesses of energy compared with what 
was planned for, and they therefore can lead to variation in 
costs and revenues. Adopting appropriate strategies to mitigate 
the risks associated to such uncertainties requires operational 
decision-making tools that account for such uncertainties 
while scheduling different generation and storage resources. 

Energy storage devices (either thermal or electrical) can be 
considered as buffers within the system that enhance flexibility 
in responding to fluctuations due to renewable resources. But 
the effectiveness of such storage applications depends heavily 
on how the devices are controlled. The control strategy should 

figure 1. Overview of the DNV KEMA model.
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figure 2. (a) PV production, (b) CHP production, (c) day-ahead prices, (d) energy purchased, (e) energy sold, and (f) bat-
tery storage state of charge for a sample microgrid. 
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be designed to make sure the storage devices are available when 
they are expected to provide service. Moreover, the storage con-
trol needs to take into account the cost of energy for charging 
and technical constraints around charging, discharging, and 
performance degradation of the device. In the model results 
shown, the storage resource is co-optimized with energy pro-
duction and demand response in a mixed-integer programming 
formulation. The examples shown are based on “real data” in 
the sense that typical Los Angeles–based building information, 
energy prices, and renewable performance are used. In this 
instance, investments in energy efficiency are the single most 
valuable option. Electrical storage is still too expensive to make 
sense on its own, but when coupled with significant investments 
in PV generation, storage starts to show benefits. Thermal stor-
age is economical purely in terms of shifting air-conditioning 
load from peak to off-peak. The investment portfolio optimi-
zation is complicated by current policies around rebates and 
tax incentives for different energy efficiency investments and 
renewable technologies. For instance, if a continued decline in 
PV costs is projected, it may make sense to delay major PV 
investments until the last year incentives are available.

Noneconomic Benefits
The benefits from microgrids are not only economic. 
Microgrids can be viewed as a means of creating zero-
net-energy communities and meeting other environmental 
goals established by states or regulatory agencies. More-
over, microgrids can operate in islanded mode and sus-
tain the power supply in the event of a grid outage. This 
is in particularly crucial in order to resume the operation 
of critical infrastructure such as military facilities, hospi-
tals, ports, public transportation, and emergency-response 
facilities. With the aging of grid infrastructure and restric-
tions on new investments in transmission and distribution 
networks, microgrids can serve as an alternative solution to 
intense investment in the centralized grid. Figure 5 shows 
how a microgrid can supply a portion of load during a grid 
outage. In this configuration, PV and battery storage (BS) 
are sufficient to supply all critical and uninterruptible load 
for each hour of the outage, and storage level decreases with 
the duration of the outage. Uninterruptible load experiences 
a momentary outage (not represented on plots), because 
no uninterruptible power supply (UPS) is installed and 
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insufficient resources are available to 
supply noncritical load.

Stochastic Operation
Traditionally, the wholesale electricity 
market uses reserves and load-following 
capacity to hedge against shortage risks 
and load variations. Moreover, the size 
and abundance of generation resources 
and ancillary services such as LMP 
protect macrogrids against market vola-
tility in prices, demand, and generation 
capacity. Microgrids are quite vulner-
able to these risks, however, due to their 
smaller size and the volatility of their 
internal generation resources. Their 
only hedging mechanisms against 
shortage risks are to purchase energy 
from the grid at spot prices, which can 
be quite high at times of peak load or 
in an emergency, or to contract with 
energy service companies.

A typical microgrid will most likely 
be owned by a community or small 
group of public and private investors. 
The investment on microgrids will be 
very different from a traditional power 
grid since, due to their size and distrib-
uted nature, a small- to medium-sized 
investment will be more common. Fur-
thermore, to be attractive for private 
investors, a faster return on investment 
compared to the traditional grid will 
be expected. It is also very likely that 
these investors are motivated by the 
energy and cost savings that can be real-
ized from the local generation of power 
and by the security and reliability that 
microgrids can offer, especially at times 
of peak loads and during unusual events 
like natural or man-made disasters. Like 
any other financial investment, risks will 
play major role in the operation and con-
trol of microgrids. The risk is present in 
both the design of a microgrid and its 
daily operation. By appropriately sizing 
the microgrid and minimizing the risks 
from energy economics, the microgrid’s 
owners and investors will be able to 
maximize their savings while ensuring 
higher levels of energy security and reli-
ability. By doing so, the microgrid will 
also be able to help mitigate the risks 
of the larger grid, especially at times of 
emergencies and high peak loads.figure 5. Operation of a microgrid in islanded mode during a grid outage.
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figure 4. Sample microgrid cash flow diagrams over 15 years.
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figure 3. Sample microgrid energy economics.
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To account for risks in microgrid operation, uncertain-
ties should be formulated using a stochastic optimization 
model. It is interesting that as we move from deterministic 
to stochastic models, the planning decision moves toward 
more prior commitments and less spot purchasing, leading 
to lower expected cost and variance. (This is a function of 
expected volatility in energy prices.) As expected, the dif-
ference in the way deterministic and stochastic models make 
decisions depends on several factors, including a microgrid’s 
configuration and the variability of its resources. Therefore, 
a careful examination of existing settings will help the deci-
sion maker choose the appropriate model for planning and 
operation so as to make sure that ignoring uncertainty (i.e., 
choosing a deterministic model) does not have an adverse 

impact in terms of increasing the variation of planning deci-
sions and to make sure that taking uncertainty into account 
does not lead to a more complicated and costly model with-
out creating a noticeable benefit for the decision maker.

As a microgrid’s on-site capacity increases, its cost distri-
bution (in terms of both the average and standard deviation) 
becomes less sensitive to risks and uncertainties. Risks and 
uncertainty in cost distribution increase with more renew-
able penetration and decrease with more fuel-fired genera-
tion within the microgrid.

Stochastic Investment
Models developed at Rutgers University are able to balance 
the risks and outcomes associated with microgrid investment 

figure 6. Deterministic investment model.
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figure 7. Stochastic investment model.
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figure 8. Incremental investment with and without interaction.
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and operation. The microgrid cost savings function is calcu-
lated from a model that optimizes day-ahead planning and 
the same-day operation of the microgrid under a host of sto-
chastic variables. This functional form is fed into a stochastic 
long-term investment model, which decides when to invest in 
microgrid components and expansions. The investment model 
captures long-term market and financing volatilities, such as 
the investment costs of PV and storage, natural gas prices, the 
availability of investment funds, and the correlation between 
peak electricity prices and natural gas prices.

The analysis is performed on the basis of cash flow, reflect-
ing actual outflows and inflows of monetary values. It requires 
proper identification of the costs and benefits resulting from 
the investment, including any marginal values introduced to 
the system by the investment. The analysis includes the sunk 
cost incurred by a new investment as well as its opportunity 
cost (the benefit forgone if the investment is undertaken). An 
opportunity cost is also incurred if the asset or resource can be 
used in some alternative way and with some positive return. 
Cash flow at the end of the planning horizon plus the value 
of beyond-horizon cash flows at the end of the horizon is the 
investment criterion to be maximized within the investment 
optimization model.

We look at incremental investment decisions over a spe-
cific time horizon to evaluate microgrid investments. Deci-
sions regarding how much (if any) capacity of each type of 
resource, i.e., gas-fired generation (GF), PV, wind turbine 
(WT), and electricity storage (ST), should be purchased at 
the beginning of each one-year time period. 

Figures 6 and 7 show investment strategies using deter-
ministic and stochastic investment models. In this example, 
uncertainty exists in future PV capital costs. Therefore, a 
stochastic model would suggest a strategy that is more dis-
tributed over the horizon. This could be viewed as a hedging 
mechanism against the future uncertainty.

Results may not match expectations if interactions between 
assets exist in the actual microgrid but operation and invest-
ment models ignore them. For example, PV and ST have inter-
action effects on the cost savings of the microgrid. Depending 
on the value that it generates, the interaction between PV and 
ST may make investment in these assets more or less attractive. 
The incremental investment decisions about various resources 
are shown in Figure 8. The interaction between PV and ST 
forces the investment to allocate more capacity to these assets 
in the fourth year in comparison with the same case without 
such an interaction. PV dominates the investment because of its 
higher contributions to the savings generated by the microgrid. 
Allowing for interactions between the two assets permits the 
use of storage not only for arbitrage but also coupled with 
PV production. Therefore, at some point in time (here, in the 
fourth year), the value of storage exceeds its costs and thus 
becomes more attractive as an investment. This observation 
tends to verify our hypothesis, and it necessitates the use of an 
appropriate model in cases where such interactions exist.

Future Work
Participation in capacity markets and ancillary services mar-
kets are attractive revenue streams for microgrids. Inclusion 
of ancillary market commitments in day-ahead and intraday 
operations is a well-understood problem; the mathematics is 
very similar to that used for the co-optimization that indepen-
dent system operator (ISO) market operations practice when 
scheduling grid resources today. As with ISO-level market 
operations, incorporating significant storage in the formulation 
and obtaining co-optimized solutions are challenges. Incorpo-
rating ancillary participation into investment decisions is more 
complicated, however, as bidding strategies come into play. In 
the examples shown above, the microgrid is a simple “price 
taker” in the market that optimizes its resources once market 
prices are known. But to participate in the ancillary markets, 
the microgrid operator must make informed decisions about 
what ancillaries and what energy to offer the markets as a bid-
der. This complicates the decision process and the investment 
decisions required to enable that participation.

There is also interest from very large facility operators in 
co-optimizing energy operations across multiple microgrids. 
This is an area being intensively investigated at Rutgers.
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