

Electric Energy Systems: Theory & Analytical Skills

Energy policy and sustainability

- Problem & issue identification
- Complex system analysis

Electric power generation

- Energy conversion
 - o Mechanics
 - o Thermodynamics

Environmental issues

- Atmospheric chemistry
- Climate change
- Technology and society

Intermittent renewable energy resources

• Probability and statistics

Load modeling, NDT modeling, System planning

- Probability and statistics
- * Production cost modeling
- * Multi-attribute tradeoff analysis
- * Reliability: component & system

Economic Dispatch

- * Linear programming
- * Constrained optimization
- * Lagrangean solutions

Power flow in an interconnected system

- AC circuits
- * Power flow equations
 o Iterative solutions

Electric motors and generators

- * Electro-mechanical systems
- Electromagnetic theory & induction
- * 3ø complex power

Optimal power flow

• * Iterative constrained optimization

Government regulation and industry deregulation

• * Economic policy