

Thevenin Equivalent Circuit 2

EGR 220, Chapter 4 February 25, 2020

Equivalent Resistance

- Equivalent resistance and voltage are terminaldependent
- \bullet Ohm's Law tells us that $V = I^{\ast}R$ so...
 - $\mathbf{R} = \mathbf{V}/_{\mathbf{I}}$
 - Electrical <u>resistance</u> is <u>the ratio of</u>:
 - The (open circuit) voltage across a pair of nodes to
 - The (short circuit) through the pair of nodes

						2
2						

- a) Indistinguishable from each other,
- b) ... In terms of the $V I R_{eq}$ characteristics,

3

c) ...At the specified terminals (nodes)

Thevenin Equivalent – Process

6

Thevenin Equivalent – Process

1) Find R_{Th}:

- a) Remove the load resistor (if there is one)
- b) Set all (independent) sources equal to zero.
 - V-source = 0V ⇔ < open / short >
 - I-source = 0A ⇔ < open / short >
- c) Find the equivalent resistance from the specified nodes

2) Find V_{Th}:

- a) <u>Return to the original circuit</u>, remove the load again, but keep all sources, and
- b) Find the open-circuit voltage across the specified nodes

5

7

The venin: Find $V_{Th}\text{, }R_{Th}$

5

7

Thevenin: Find V_{Th}, R_{Th} - Mesh Analysis - 60Ω 2 A 30Ω 12 A 2 30Ω 2

8

9		10
	10	

- * Maximum Power Transfer *
- <u>*How*</u> do we find the P_{max} the circuit can deliver to R_L ?

9

Maximum Power Transfer

Concept Question

- Are equivalent circuits all the same?
- Discuss V_{Th}, R_{Th} at *a-b* and *b-c*
- What is $R_{\rm L}$ for maximum power transfer, and how do you find the amount of power transferred?

14

16

15

15

17				

(Thevenin equivalent for b to c is posted)

Thevenin Self-Review

- What is a Thevenin Equivalent Circuit?
 - Draw a generic Thevenin equivalent circuit
 - Discuss and write down 3 good uses for a Thevenin equivalent circuit, or for the Thevenin theorem
- How might you find the maximum power that can be delivered to any load from any circuit?
 - Why is this an important question?

22

Norton Equivalent Circuit

$$V_{Th} = v_{oc}$$

$$I_N = i_{sc}$$

$$R_{Th} = R_N = R_{in} = \frac{v_{oc}}{i_{sc}}$$

Summary

- Source transformation
- Equivalency
 - Equivalent resistance
 - Voltage Current R_{eq} behavior
- Thevenin equivalent circuit
 - V-source & series resistor
 - Uses for Thevenin equivalent circuits
 - Only need to know the Norton equivalent exists. We will focus on Thevenin

22

21

21

Questions?