2

4

Equivalent Circuits: Thevenin Theorem

EGR 220, Chapter 4.5 - 4.11 (not section 4.9) February 20, 2020

Overview

- Review concepts of
 - Voltage
 - R_{eq}

• Thevenin Equivalent Circuit

- Equivalent V_s-with-series-R
- "Equivalent" V-I-R behavior to an actual power supply or 'driving' circuit.

1

3

Equivalent Resistance

- Equivalent resistance and voltage are terminaldependent
- Ohm's Law tells us that V = I*R so...
 - R = ^v/₁
 - Electrical <u>resistance</u> is <u>the ratio of</u>:
 - The (open circuit) voltage across a pair of nodes to
 - The (short circuit) through the pair of nodes

• Equivalent circuits concept

- a) Indistinguishable from each other,
- b) ...In terms of the $V I R_{eq}$ characteristics,
- c) ...At the specified terminals (nodes)

Source Transformation & Equivalents

- Voltage V_{ab} and R_{eq} can be measured across any nodes of *any* device or circuit.
- We are interested in this measured orcalculated
 V I R behavior

Source Transformation

• Caution: maintain polarity of sources

Your Mission

- Find two circuits with equivalent behavior with
 - 1) 1 current source + 1 resistor
 - 2) 1 voltage source + 1 resistor
- If you design a power source with output of
 - I = $\infty A \rightarrow$ Your computer will **melt**
 - V = $0V \rightarrow$ Your computer will be a paper weight

7

Will your computer melt/do nothing?

Will your computer melt/do nothing?

Later: Can these be equivalent?

11

Later: Can these be equivalent?

Later: Can these be equivalent?

Source Transformation

• Find *i* in the circuit below

5Ω $10 \,\Omega$ ~~~~ -**↓***i* $\begin{cases} 4 \Omega \end{cases}$ $\begin{cases} 5 \Omega \end{cases}$ 2 A 🚺 + 20 V

15

Thevenin Equivalent

14

Thevenin Equivalent – Process $10 \ \Omega$

Thevenin Equivalent – Process

1) Find R_{Th}:

- a) Remove the load resistor (if there is one)
- b) Set all (independent) sources equal to zero.
 - V-source = 0V ⇔ < open / short >
 - I-source = 0A ⇔ < open / short >
- c) Find the equivalent resistance from the specified nodes

17

Thevenin Equivalent

• A Thevenin equivalent circuit is

- An equivalent version of a different circuit
- ...In terms of the V-I characteristic, at the specified nodes
 - Defined in terms of specified terminals/nodes
- Consists of a single resistor, $R_{\text{Th}},$ and a voltage source, V_{Th}

Thevenin Equivalent – Process

- 1) Find R_{Th}:
 - a) Remove the load resistor (if there is one)
 - b) Set all (independent) sources equal to zero.
 - V-source = 0V \Rightarrow < open / short >
 - I-source = 0A \Rightarrow < open / short >
 - c) Find the equivalent resistance from the specified nodes

2) Find V_{Th}:

17

19

- a) Return to the original circuit, remove the load again, but keep all sources, and
- b) Find the open-circuit voltage across the specified nodes

18

. .

The venin: Find V_{Th} , R_{Th}

27

Thevenin: Find V_{Th} , R_{Th}

 Try setting up a solution method for all our analysis techniques and think about pros and cons of the different approaches

Thevenin: Find V_{Th} , R_{Th}

31

- * Maximum Power Transfer *
 - <u>*How*</u> would we find the P_{max} delivered to R_L?
 - Do not solve discuss strategy (chapter example)

Concept Question

- Are equivalent circuits all the same?
- Discuss V_{Th}, R_{Th} at *a*-*b* and *b*-*c*
- What is R_L for maximum power transfer, and how do you find the amount of power transferred?

8

Concept Question

- Are equivalent circuits all the same?
- Discuss V_{Th}, R_{Th} at *a-b* and *b-c*
- What is R_L for maximum power transfer, and how do you find the amount of power transferred?

Norton Equivalent Circuit

$$V_{Th} = v_{oc}$$
$$I_N = i_{sc}$$

$$R_{Th} = R_N = R_{in} = \frac{v_{oc}}{i_{sc}}$$

12

Thevenin Self-Review

- What is a Thevenin Equivalent Circuit?
 - Draw a generic Thevenin equivalent circuit
 - Discuss and write down 3 good uses for a Thevenin equivalent circuit, or for the Thevenin theorem
- How might you find the maximum power that can be delivered to any load from any circuit?
 - Why is this an important question?

Summary

33

35

- Source transformation
- Equivalency
 - Equivalent resistance
 - Voltage Current R_{eq} behavior
- Thevenin equivalent circuit
 - V-source & series resistor
 - Uses for Thevenin equivalent circuits
 - Only need to know the Norton equivalent exists. We will focus on Thevenin

36

34

2/19/20

Questions?